

Software videos: Rich content and
learning potential, but a challenge for
sensemaking

Abstract
Video is a rapidly growing online medium; its rich
content makes it both well-suited for communication
and learning, and incredibly difficult to analyze and
make sense of automatically. Our work explores ways
to extract useful clips from online software videos and
embed them as contextually-relevant demonstrations in
software while the user works. We present methods for
automatically extracting clips from live-streamed
software videos and recommending clips based on user
behaviour. To test these methods, we have
implemented them in two systems as extensions to
desktop software. We conclude by discussing future
applications for these techniques to improve the ways
videos are shared, searched, and interacted with.

Author Keywords
video; complex software; learning; recommendations

ACM Classification Keywords
H.5.1. Information interfaces and presentation (e.g.,
HCI): Multimedia Information Systems.

Introduction: Sensemaking with Software
People of all experience levels use complex software to
complete tasks, and often turn to the web for help with

C. Ailie Fraser
Design Lab, UC San Diego
La Jolla, CA, 92093, USA
cafraser@ucsd.edu

Mira Dontcheva
Adobe Research
Seattle, WA, 98103, USA
mirad@adobe.com

Scott Klemmer
Design Lab, UC San Diego
La Jolla, CA, 92093, USA
srk@ucsd.edu

Adobe Research
Seattle, WA, 98103, USA

Figure 1: App-integrated clip
recommendations in an image
editing application. Short clips are
selected from live-streamed videos
using a mix of telemetry data and
computer vision methods.

problems, learning new techniques, and finding
inspiration – all of which are substantial sensemaking
tasks. Prior work has demonstrated methods for mining
& improving software tutorials (e.g. [3, 5, 9]) and
recommending tools or actions in context [4, 10].
However, video demonstrations are often preferable for
learning visual tasks [11], and videos remain difficult to
parse and understand.

One source of software demonstrations not yet
explored in the literature is live-streams. Many experts
share their process by live-streaming their screen while
they work on creative tasks (Figure 2); these videos
are a rich and rapidly growing source for expert
demonstrations. However each is usually several hours
long, and finding relevant moments from this large
collection can be difficult, making live-streams an
under-utilized data source.

Our current work focuses on extracting relevant clips
from long live-streamed videos and recommending
them to the user in the context of their own work. Our
goal is to automate the tedious sensemaking task of
searching and browsing through videos, so that users
can focus their energy and time on their primary task in
software. We present two systems that automatically
extract and recommend video clips from live-streams:

1) App-integrated, offline processing: This system
processes videos offline using visual information and
usage data, and recommends clips based on tool use. It
is implemented as an extension for Adobe Photoshop.

2) OS-wide, online processing: This system searches
and analyzes videos online using metadata and
captions, and recommends clips based on tool use. It is

implemented as a MacOS panel that responds to user
behaviour in any accessibility-enabled desktop app.

While our current work focuses on live-streams, it can
easily be extended to any software videos, such as
tutorials. We conclude by discussing future applications
for our techniques to improve the way we navigate
video online, and help users complete tasks efficiently.

Tutorial and Video Interaction
Tutorials, both online and in-application, are a popular
resource for software users [3, 5, 9]. However, they
take time to author, and they only show the
information that the author explicitly decides to show.
Seeing a live demonstration is often a crucial
component of learning for visual tasks; video tutorials
are therefore a very popular resource [11]. However,
videos are hard to digest and are not well-suited for
working at the same time; users must switch context
back and forth to follow along with a video.

Existing methods improve video tutorials by pausing
them in response to user actions so they are easier to
follow along with [11], segmenting them into clips for
each step [2], and sharing alternate demonstrations
with the community [8]. However, these methods
require either textual descriptions or usage data from
the videos, as well as detailed knowledge about the
software in question, and thus none have become
pervasive in everyday software use. Making use of the
huge amount of video content that already exists and is
being uploaded every day remains an open problem.

Extracting & Recommending Clips
Our work aims to make the knowledge that is present
in software live-stream videos more available to people

Figure 2: Examples of creative live-
streams on Twitch and YouTube.
Artists stream videos of themselves
working in complex software on
creative projects. (Sources:
twitch.tv/videos/154575884,
youtu.be/jP5fKeG1CkU,
youtu.be/RtswnAYbrdk,
twitch.tv/videos/152518965)

while they work. This comprises 1) analyzing videos
and extracting short clips, and 2) recommending the
most relevant clips within the user’s software. We have
developed two methods for achieving both these goals,
one app-specific method that processes videos offline
and recommends clips in Adobe Photoshop, and one
OS-wide method that processes videos online and
recommends clips for any accessibility-enabled MacOS
application.

App-Integrated Clip Recommendation
Inspired by prior work that extracts short instructional
clips from long software video demonstrations [7], we
built a system that analyzes live-streamed videos of
Photoshop use using a mix of telemetry data from
Photoshop and computer vision to extract short clips of
various tools. Our initial dataset contained 8 videos (13
hours) from Twitch and YouTube, as well as telemetry
data for each video, consisting of time-stamped event
logs for tool selections and invocations.

Given a particular tool (e.g. brush) and each video’s
usage logs, we extract short clips using a heuristic
approach that closely matches Lafreniere et al.’s [7].
We then crop each clip to the area of most visual
change, calculated by taking the differences in pixel
values between adjacent frames. Finally, we rank clips
based on the amount of visual change (more is better),
temporal location in the full video (closer to the end is
better), and the user’s behaviour in Photoshop (clips
with the tools in common with the user are better).

We built an HTML Photoshop extension with three
different interface modes: a persistent panel, an on-
demand modal window, and tooltips that appear when
mousing over a tool (Figure 1). It searches for clips

from our dataset based on the user’s recent tool use.
Initial pilot feedback suggests that it is helpful to see
expert demonstrations of the tools one is using while
one works, but not all clips suggested are relevant to
the task at hand, as each tool can be used for a wide
variety of tasks. Careful consideration is required for
developing improved heuristics for ranking clips.

OS-Wide Clip Recommendation
While offline processing allows detailed analysis of
videos and enhanced display abilities such as smart
cropping, it is time-consuming and usually requires
knowledge about the software, either in the form of
telemetry data [2, 7] or tool templates for vision
methods [11]. To explore a more generalizable
approach for video sensemaking, we have built a
domain-general implementation that searches for and
processes videos online in real-time. Our available
dataset consists of all archived live-streams on
YouTube that have a caption track (which most do, as
YouTube automatically generates them by default).

This system searches for and extracts video clips using
only the available online information from YouTube,
that is, metadata and captions. We built a MacOS panel
(Figure 3) that monitors the user’s mouse clicks in any
application that uses Apple’s Accessibility API. To find
relevant video clips, the system sends search requests
to the YouTube API with queries containing the
application’s name and the name of the most recently
clicked interface elements in the application (e.g., tool
buttons). It retrieves the top videos that have captions
and searches their caption tracks to find the specific
moments in the video where the interface element(s) in
question were mentioned. Finally, it ranks the retrieved
clips and embeds the top clips in the panel as YouTube

Figure 3: OS-wide clip
recommendations based on the
software currently being used. Short
clips are selected from live-streams
by searching YouTube in real time
and identifying moments based on
video captions. In this example the
user has recently clicked on the
“repeat grid” tool in Adobe XD.

embedded videos with specified start times. Currently,
clip ranking is done by selecting the first occurrence of
the keyword in each video, and users will have the
option to view more clips from that video. As we gather
long-term usage data, we will improve our clip ranking
based on user behaviour.

An evaluation of this system is ongoing. Initial
anecdotal findings and pilot test feedback indicate that
this method is able to find reasonably relevant clips in a
fraction of the time it would take a user to manually
skim through the retrieved videos (which are on
average about 1.5 hours long). Video streamers tend to
describe what they are doing while they do it, as well
as provide advice about making decisions (such as
whether to use one tool over another), all of which are
captured by the video captions.

The Future of Online Video
Contextual recommendation of video clips is just one
potential application of the techniques we have
presented. Another would be to improve the online
browsing and searching process. Currently most video
sites simply show a thumbnail and short description for
each search result, which is rarely enough information
scent for users to determine which video contains the
information they are looking for. Enhanced video search
interfaces could provide richer information such as key
terms that are mentioned, tools or techniques that are
used, and informative previews for key moments.

The literature on video summarization has presented
techniques for reducing long videos to a selection of
only the most important frames or clips (e.g. [12]),
which can also help one explore a large collection of
videos. We can exploit the properties of software videos

in particular (i.e. that they are usually screencasts
showing GUIs with buttons and menus) to produce
video summaries that both shorten videos and highlight
the key details that are needed to understand them.

Finding the right moment(s) within a given video is also
a challenge; users can skim through the timeline and
see small previews, but these low-fidelity thumbnails
only give a very general picture. Some work has
explored interfaces for improving the browsing
experience of video tutorials (e.g. [6]). Finding ways to
more closely link this browsing experience to the
software task at hand would be valuable.

Future work should also consider how videos can
integrate with other data sources such as text and
images, all of which are useful sources for
sensemaking. Some websites provide limited
interaction between tutorial steps and corresponding
sections in videos (e.g. lynda.com), but there may be
ways to deepen the connection between them, such as
automatically matching up mentions of tools or
techniques across the text, images, and video.

Text is quickly becoming a way of the past when it
comes to learning and communicating visual
information. As technology continues to improve,
higher-fidelity media such as video will become the
preferred types of consumed and created media. Videos
(especially live-streams) are easier to make than
webpages, and short clips are more entertaining to
watch [1]. In order to keep up with this rising trend,
the sensemaking community must work to understand
and improve the ways people navigate and experience
online videos, not just for software, but across all
domains.

References
1. Saeideh Bakhshi, David A. Shamma, Lyndon

Kennedy, Yale Song, Paloma de Juan, and Joseph
“Jofish” Kaye. 2016. Fast, Cheap, and Good: Why
Animated GIFs Engage Us. Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems - CHI ’16, ACM Press, 575–586.
http://doi.org/10.1145/2858036.2858532

2. Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira
Dontcheva, Wilmot Li, and Björn Hartmann. 2012.
MixT: Automatic generation of step-by-step mixed
media tutorials. Proceedings of the 25th annual
ACM symposium on User interface software and
technology - UIST ’12, ACM Press, 93.
http://doi.org/10.1145/2380116.2380130

3. Adam Fourney and Michael Terry. 2014. Mining
Online Software Tutorials: Challenges and Open
Problems. Proceedings of the extended abstracts of
the 32nd annual ACM conference on Human factors
in computing systems - CHI EA ’14, ACM Press,
653–664.
http://doi.org/10.1145/2559206.2578862

4. C. Ailie Fraser, Mira Dontcheva, Holger
Winnemoeller, Sheryl Ehrlich, and Scott R.
Klemmer. 2016. DiscoverySpace: Suggesting
Actions in Complex Software. DIS ’16: Proceedings
of the 2016 conference on Designing Interactive
Systems.

5. Caitlin Kelleher and Randy Pausch. 2005. Stencils-
Based Tutorials: Design and Evaluation.
Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’05, ACM Press,
541. http://doi.org/10.1145/1054972.1055047

6. Juho Kim and Juho. 2013. Toolscape: enhancing
the learning experience of how-to videos. CHI ’13
Extended Abstracts on Human Factors in
Computing Systems on - CHI EA ’13, ACM Press,
2707. http://doi.org/10.1145/2468356.2479497

7. Ben Lafreniere, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2014. Investigating the
feasibility of extracting tool demonstrations from
in-situ video content. Proceedings of the 32nd

annual ACM conference on Human factors in
computing systems - CHI ’14, ACM Press, 4007–
4016. http://doi.org/10.1145/2556288.2557142

8. Benjamin Lafreniere, Tovi Grossman, and George
Fitzmaurice. 2013. Community enhanced tutorials:
Improving tutorials with multiple demonstrations.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI ’13, ACM
Press, 1779.
http://doi.org/10.1145/2470654.2466235

9. Gierad Laput, Eytan Adar, Mira Dontcheva, and
Wilmot Li. 2012. Tutorial-based interfaces for
cloud-enabled applications. Proceedings of the 25th
annual ACM symposium on User interface software
and technology - UIST ’12, ACM Press, 113.
http://doi.org/10.1145/2380116.2380132

10. Justin Matejka, Wei Li, Tovi Grossman, and George
Fitzmaurice. 2009. CommunityCommands:
Command Recommendations for Software
Applications. Proceedings of the 22nd annual ACM
symposium on User interface software and
technology - UIST ’09, ACM Press, 193.
http://doi.org/10.1145/1622176.1622214

11. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, et
al. 2011. Pause-and-Play: Automatically Linking
Screencast Video Tutorials with Applications.
Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11,
ACM Press, 135.
http://doi.org/10.1145/2047196.2047213

12. Ba Tu Truong and Svetha Venkatesh. 2007. Video
abstraction: A systematic review and classification.
ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 3, 1: 3.
http://doi.org/10.1145/1198302.1198305

