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Figure 1: WeBuild helps collocated groups coordinate tasks. a) A group completes our study task with the help of WeBuild. b) A 
shared dashboard display provides a task overview. c) Each user views personalized step-by-step instructions on a mobile phone. 

ABSTRACT 
Physical construction and assembly tasks are often carried 
out by groups of collocated workers, and they can be diffi-
cult to coordinate. Group members must spend time decid-
ing how to split up the task, how to assign subtasks to each 
other, and in what order subtasks should be completed. In-
formed by an observational study examining group coordi-
nation challenges, we built a task distribution system called 
WeBuild. Our custom algorithm dynamically assigns sub-
tasks to workers in a group, taking into account factors such 
as the dependencies between subtasks and the skills of each 
group member. Each worker views personalized step-by-
step instructions on a mobile phone, while a dashboard vis-
ualizes the entire process. An initial study found that 
WeBuild reduced the start-up time needed to coordinate and 
begin a task, and provides direction for future research to 
build on toward improving group efficiency and coordina-
tion for complex tasks. 
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INTRODUCTION 
Physical building tasks, such as building construction, fur-
niture assembly, and toy kit construction, are often carried 
out by groups of collocated workers. With the exception of 
professional settings that involve a dedicated manager, the 
coordination amongst workers can be a challenge. The 
workers must spend time dividing and assigning tasks, lo-
cating and sharing tools, and figuring out how to execute 
instructions. As a result, the time spent actually completing 
the task may only be a fraction of the total time taken [44]. 

Traditional assembly instructions rarely indicate how mul-
tiple workers should collaborate (Figure 2a, b) or how the 
task can be efficiently subdivided (Figure 2c). While aids 
for physical assembly have been studied, they are often 
developed for a single user scenario (e.g. [5, 17, 18, 34, 38, 
43, 45]). Multiple users have been considered, but typically 
with an expert providing remote assistance (e.g. [21, 23, 25, 
33, 36]). With the exception of recent Crowdsourced Fabri-
cation research [26], little work has looked at how to pro-
vide dynamic assistance to a team of collocated workers.  

Our work aims to bring the known benefits of task man-
agement systems [27, 29, 39] and interactive instructions 
[1, 5, 17, 24] to the scenario of collocated group construc-
tion and assembly. We introduce WeBuild, a system that 
automatically distributes subtasks among workers, taking 
into account the workers’ skills, the dependencies between 
subtasks, and the availability of tools, with the goal of im-
proving group efficiency and coordination (Figure 1). 
WeBuild continuously adapts to the progress of the group 
to ensure an efficient distribution of tasks.  An initial study 
found that WeBuild reduced the start-up time to coordinate 
and begin a task by 88%, and though further formal valida-
tion is needed, our findings suggest that such a system can 
improve group efficiency and satisfaction. 
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Figure 2: Instructions from an IKEA cabinet [46] (a) and a 

JYSK shelf [47] (b) both show a 2-person requirement at the 
beginning, but do not show where or how the second person 
should help. c) Instructions for a microwave [48] show a se-

cond person helping for one step but no indication as to what 
this additional person should do for the rest of the task.  

The main contribution of our work is the design and im-
plementation of WeBuild. We also contribute a back-end 
model for representing and subdividing physical task in-
structions, and an adaptive on-the-fly algorithm for distrib-
uting subtasks among workers. Finally we contribute obser-
vations and insights gathered from two studies, the first 
being an observational study of group coordination chal-
lenges, and the second being a preliminary evaluation of 
WeBuild as compared to a baseline condition of paper in-
structions. Our studies and implementations look at smaller-
scale static tasks, such as toy building and furniture assem-
bly, so we conclude by discussing how WeBuild could gen-
eralize to larger scales and more dynamically changing 
tasks, such as architectural construction and disaster relief. 

RELATED WORK 
Our work has been guided and inspired by previous re-
search in the domains of physical task assistance, collabora-
tive task aids, and automatic task distribution. 

Real-time Assistance for Physical Tasks 
Static instructions such as online tutorials and paper manu-
als are a popular resource for physical tasks. However, the 
burden is on the user to keep track of their progress and 
evaluate whether they are following the instructions cor-
rectly. Dynamic, context-sensitive assistance has been 
shown to help with these challenges by detecting user pro-
gress and stepping through instructions accordingly, and 
providing real-time feedback to ensure that users complete 
each step correctly [5, 17, 34, 43]. 

Researchers have explored several different modalities for 
displaying such real-time assistance for physical tasks. 
Wearable hands-free displays such as smartwatches have 
been found to be promising for providing short, relevant 
instructions [1, 26, 45]. Augmented reality, provided 
through projections or head-mounted displays, can further 
help to guide users through complex tasks [17, 18, 38, 43]. 
Alternatively, Knibbe et al. used a tabletop display to pro-
vide contextually relevant instructions for DIY tasks [24]. 

Our work similarly leverages both mobile devices and large 
displays, but adapts these concepts to a multi-user scenario. 

In terms of what type of task to use for evaluating such as-
sistive systems, Funk et al. proposed standardized bench-
mark tasks in two high-level categories: “pick-and-place” 
(e.g. LEGO) and “industrial assembly” (e.g. using screws 
and nails) [13]. The task used in our study is heavily based 
on these benchmarks but is designed specifically for a 
group of workers. Like Funk et al. [13, 14], we include our 
full task instructions as supplementary material to similarly 
serve as a potential benchmarking task or inspiration for 
future group assembly work.  

Collaborative Task Aids 
Most research examining collaboration on physical tasks 
has focused on improving remote collaboration, often be-
tween a worker and a remote expert [21, 23, 25, 33, 36]. 
For example, a remote helper’s presence can be improved 
by displaying their hand gestures in 3D [36] or 2D video 
[23, 33], and hands-free technology can help users com-
municate while actively working on the task [21]. Our work 
focuses instead on collocated collaboration within a group 
of users, none of whom may be an expert at the task.  

There are few examples of aids for collocated collaborative 
physical tasks. TurkDeck projects instructions onto the en-
vironment for a group of people arranging props in a haptic 
virtual reality scene [10]. Lafreniere et al.’s work on 
Crowdsourced Fabrication [26] advanced this to more com-
plex tasks, where a crowd of workers assembled a large 
pavilion structure with dynamic assistance via smartwatch-
es. However, the system had each worker complete the ex-
act same task independently. This was done approximately 
two hundred times, with little required coordination or col-
laboration. Our system considers tasks comprising many 
different subtasks, each of which may involve different 
tools and require different numbers of people. 

Collocated group collaboration has also been studied for 
other types of tasks such as brainstorming [11], decision-
making [6], problem solving [9, 20, 37, 41], and software 
development [7]. While the main need of remote teams 
tends to be improved communication [7], collocated teams 
have been shown to mainly have need for improved task 
structuring and scheduling [8, 11], documentation of pro-
gress [7], and awareness of others’ progress and overall task 
status [9, 32, 41]. Our work, informed by these findings, 
mainly focuses on task coordination and structuring, by 
automating the distribution and management of subtasks.  

Task Distribution 
The general problem of task distribution is found in many 
different domains, and it involves balancing a set of defined 
constraints, dependencies, and goals, the specifics of which 
depend on the domain at hand. 

For example, with resource scheduling in operating sys-
tems, fair allocation is an important goal, and so random-
ized algorithms have been shown to work well [40]. For 



 

software development and release planning, there are often 
many different potentially conflicting criteria to optimize, 
such as the various stakeholders’ opinions [16]. Greer & 
Ruhe [16] presented a flexible algorithm that re-calculates 
the optimal plan after each increment is complete, thus 
adapting smoothly to changing circumstances.  

Theoretically, this problem is known as the “resource-
constrained project scheduling problem”, and has been 
widely researched (e.g. [4, 31]). For example, Artigues 
showed that this problem can be framed as a combinatorial 
optimization problem [4]. Our work differs slightly in that 
we do not know the execution times of each subtask be-
forehand, but our formalization of the task model is similar. 

In the industrial domain, physical assembly tasks are often 
carried out by groups of robot workers. A large body of 
work has focused on algorithms to optimally allocate tasks 
(e.g. [15, 35, 39]). Human workers tend to be less predicta-
ble, so these algorithms do not translate directly, though our 
own task model and algorithm were inspired by those used 
in the robotic task planning literature. 

In summary, despite the extensive research on aids for 
physical assembly tasks, little work has been done to under-
stand and aid in the challenges associated with coordinating 
a group of collocated workers for completing such tasks. 

OBSERVATIONAL STUDY 
To improve our understanding of the current challenges 
groups face and the strategies they use when collaborating 
on physical tasks, we conducted an exploratory observa-
tional study. To avoid constraining our findings and design 
goals to one specific task, we used two different tasks: two 
groups built a Meccano Tower Bridge set [49], and two 
groups built an IKEA cabinet [50]. 

Participants 
We recruited 16 participants from our organization (4 fe-
male, ages 18 - 54) and split them into groups of four. All 
participants had at least some experience working with 
hand tools (mean 3.75/5, SD 0.86, where 1 = never used, 
and 5 = use all the time). Participants had limited experi-
ence working with IKEA and Meccano specifically: IKEA 
participants’ mean experience was 2.63/5 (SD 0.74), and 
Meccano participants’ mean was 1.25/5 (SD 0.46). In each 
group, some participants knew each other well, while others 
had never met. 

Procedure 
Each group was given four copies of the instruction book-
lets for their task. All of the required tools were provided, 
with enough tools for four people to work simultaneously 
on any individual step if they chose to do so. The IKEA 
task required screwdrivers and a hammer, and the Meccano 
task required a small wrench and a screwdriver. 

Groups were told to accomplish as much of the task as they 
could within one hour. An experimenter took notes and 
observed group dynamics. After the session, each partici-

pant completed a questionnaire reflecting on how the ses-
sion went and how they felt it could have been improved, as 
well as providing demographic information and details 
about their prior building experience. Observations and 
participant responses were analyzed to highlight recurrent 
themes and behaviours.  

Observations 

Task Distribution 
All groups spent several minutes of initial “start-up time” 
figuring out how the different components of the task fit 
together and deciding how to split up the task. In both Mec-
cano groups, each person worked on one of the four main 
towers. Both IKEA groups initially divided into two pairs, 
one building the cabinet body, and one building the four 
drawers (Figure 3). Once these main IKEA components 
were finished, additional time was spent figuring out which 
of the remaining components to do next. The distribution of 
the remaining subtasks varied between the two groups, as 
the optimal order to complete them in was not obvious. 

Task distribution and collaboration strategies also varied 
between pairs. For those working on the IKEA drawers, one 
pair opted to build each drawer together one at a time, while 
the other opted to build the first drawer together, and the 
next two in parallel. The former group was more successful, 
as in the latter group, one participant worked ahead on their 
drawer while the other got stuck on an earlier step. Some 
time was lost before the first participant noticed and helped 
the second.  

In the IKEA task, a few steps required two people to work 
together (e.g. lifting and positioning the large cabinet 
walls). However, we noticed that having two people work 
on a single-person subtask was often advantageous. For 
example, participants building the cabinet body would sim-
ultaneously screw in screws on opposite sides of the cabi-
net, eliminating the need for one participant to move around 
to both sides after completing each step. 

 
Figure 3: A group in our observational study split into pairs to 

build the IKEA cabinet. 



 

In general, once a person had completed a step or subtask 
once, they were able to do it again faster and more easily. 
Sometimes the group would recognize this and delegate a 
subtask to someone who had done it already. Several partic-
ipants mentioned afterward that an “assembly line” setup 
might have been more efficient, as each group member 
could become a “specialist” at certain subtasks. However, 
figuring out how to distribute the tasks in this way would 
have taken longer as it would require a deeper understand-
ing of the required subtasks from the onset. 

Communication 
Overall, communication was strong within pairs but weaker 
across the group. Participants working on the same subtask 
communicated frequently, asking each other questions, 
helping each other complete tricky steps, and gathering 
tools and parts for each other. There was less communica-
tion across the entire group, and several participants men-
tioned afterward that they wished they had been more 
aware of the status of the other pair on their team. This 
could potentially have helped with the challenge of task 
distribution, as not knowing what stage the other pair was at 
made it more difficult to decide what subtask to do next. 

Prior Experience 
Some participants seemed to be naturally suited for certain 
types of tasks. In some cases, this was due to prior experi-
ence (e.g. knowing how IKEA locking screws work). How-
ever, in other cases users exhibited inherent skills. One par-
ticipant with smaller hands was better at a particularly fin-
icky Meccano step. Another participant with no prior IKEA 
experience was better at assembling drawers than other 
participants who had some experience, which could be due 
to exceptional problem-solving or spatial reasoning skills.  

DESIGN GOALS 
Our observational study validated our belief that coordinat-
ing physical tasks in a group can be challenging and thus an 
automatic task distribution system would be useful. Based 
on our observations, and guided by our review of the litera-
ture, we derived a set of design goals for an intelligent task 
distribution system.  

D1. Continuously Adapt to the Situation and Workers 
While task allocation systems for robot workers can gener-
ate optimal distribution plans before the task has begun 
[39], a system for human workers must account for the un-
predictability and individual differences of humans. It 
should therefore continuously adapt to the group’s progress 
rather than determine a global schedule. For example, if one 
worker is faster at a certain subtask, the system should as-
sign future similar subtasks to that worker. The system 
should also account for users’ prior experience [27]. 

D2. Provide a Task Overview and Promote Awareness  
Several participants mentioned a desire for more knowledge 
of the overall context of their current subtask, as well as 
more awareness of other group members’ progress. This 
need for task and group awareness has also been well doc-
umented in the literature [8, 9, 41].  

D3. Display Step-by-Step Instructions to Each Worker 
As the literature on software tutorials (e.g. [12]) and physi-
cal task assistance (e.g. [24, 26]) has shown, it is beneficial 
for participants to see instructions one step at a time, to help 
them stay on track and know what is next without having to 
hunt through an instruction booklet. 

D4. Support Adaptive Teamwork 
Participants in our study frequently grouped into pairs, as 
having someone to talk to and compare work with was of-
ten helpful. An intelligent task distribution system should 
therefore support dynamic formation of sub-teams. The 
system should be aware of which subtasks should be done 
individually, and which can be aided by multiple workers, 
and assign subtasks accordingly. 

WEBUILD: SYSTEM DESCRIPTION  
Guided by the above design goals, we built a task distribu-
tion system called WeBuild. The goal of the WeBuild sys-
tem is to help groups complete physical assembly tasks 
more efficiently, and to alleviate some of the coordination 
challenges that may otherwise be present. WeBuild takes in 
the step-by-step instructions for a task as input, including 
details about step dependencies, required tools, and associ-
ated skills, and it automatically assigns subtasks to workers. 
The algorithm works adaptively, only assigning the next 
subtask once a previous one is complete. The task instruc-
tions and details must be manually entered; our work as-
sumes such information would be available, allowing us to 
focus on the system design and behaviour.  

Range of Tasks Supported 
WeBuild is designed to support assembly tasks that can be 
represented with static step-by-step instructions. These in-
clude group furniture building (e.g. assembling an IKEA 
kitchen), large art installations (e.g. pavilions), controlled 
construction projects (e.g. building a prefabricated house), 
or high-quantity manual tasks (e.g. circuit board assembly). 
It does not currently support dynamic tasks where the end 
goal may change or there are external uncontrollable varia-
bles (e.g. disaster relief and volunteer habitat building), 
though we aim to provide the groundwork for future re-
search to explore these possibilities. 

WeBuild is usable by both groups of workers who are fa-
miliar with each other, and groups of strangers. We predict 
that WeBuild will be particularly useful in situations where 
groups do not know each other (e.g. [26]) and are likely to 
find collaboration more challenging.  

System Overview 
WeBuild comprises a central server, a dashboard display, 
and a mobile smartphone for each group member (Figure 
4). The central server can be any laptop or desktop in the 
work area. The system can scale to any number of workers, 
and can adapt to workers entering or exiting mid-task. The 
dashboard displays the overall process and structure of the 
task, to help support group awareness. Each worker’s mo-
bile phone displays instructions for their current subtask.  



 

 
Figure 4: The WeBuild system architecture. 

Task Initialization 
Before the task can begin, a group member must specify 
how many of each required tool the group has available on 
the central server. Clicking “Start” begins the task, at which 
point the system begins allocating subtasks to all users. 

Dashboard Display 
The dashboard display provides high-level task information 
to promote group awareness (D2) (Figure 1b).  

The left side displays a progress bar, parameter sliders, a 
photo of the final goal, and information about each user and 
tool (Figure 5). The “Team Members” section shows the 
names and statuses of all users, including which section of 
the task they are currently working on. The “Tools” section 
displays the tools required for the task, how many of each 
are in use or available, and buttons to update their quantity.  

The right side of the dashboard displays the task overview 
in a tree representation, broken down into sections (Figure 
6). The tree is structured by dependencies, with the root at 
the top being the final section, and the child nodes being the 
sections required for a parent node to be started.  

Individual User View 
Each group member uses a mobile phone to access an indi-
vidual view (Figure 7). We chose mobile phones over 
smartwatches [1, 26] because of their ubiquity and larger 
screen real estate for displaying graphical instructions.  

Each user connects to the IP address of the server, and logs 
in by entering their name, choosing a colour to be repre-
sented by, and rating their prior experience at each needed 
skill. Our algorithm uses this information to ensure that 
users are more likely to be assigned to tasks they are famil-
iar with (D1). 

The device informs the user when they are assigned to a 
section, and displays a photo of the section and its required 
tools (Figure 7a). Once the user has collected the tools and 
pressed the confirmation button, the instructions are shown 
one step at a time (Figure 7b). Users proceed through the 
steps manually using the “Next” and “Back” buttons (D3). 
Once the user completes the last step of the section, the 
system prompts them to confirm that they are finished, and 
displays a photo of the completed section to check their 
work against (Figure 7c). 

  
Figure 5: The left side of the dashboard displays a progress 
bar, parameter sliders, a photo of the final goal, and infor-

mation about each user and the available tools. 

 
 Figure 6: The right side of the dashboard displays a tree rep-
resentation of the task. Green nodes have no dependencies and 
are therefore ready to be assigned. Red X nodes are waiting on 

their dependencies and therefore cannot be assigned yet. 
Completed nodes and nodes in progress show the colour(s) of 

the assigned worker(s). 

  
Figure 7: The WeBuild mobile interface. a) The user has been 

assigned a section and must gather the tools to start. b) The 
user is working on a section, and views each step one at a time. 

c) The user has finished their section, and must confirm it is 
complete. 



 

When multiple users are assigned to work on a section to-
gether, the display shows who is on their sub-team and in-
structs them to find each other. Once one of the users press-
es the confirmation button to begin the section, all of the 
sub-team members’ screens are synchronized to show the 
same step. For added validation, all members of the sub-
team must confirm when the subtask has been completed.  

If a user or group is stuck during a section, they can ask for 
help (Figure 7b). The next available user will then be as-
signed to join that section. At any time, a user can click 
“Exit” to leave the task entirely, at which point the system 
logs them out and reassigns the task they were working on. 

Task Model 
A prerequisite of our system is that a representation of the 
task already exists within the system. In our current imple-
mentation, this information is entered manually.  

We developed a novel task representation based on similar 
models in the literature [4, 19, 27, 39]. A task T can be for-
mally defined by the sets of sections, tools, and skills it is 
composed of: 

T = {Sections, Tools, Skills}, where: 

Sections = {S1, S2, ..., Sn} 
Tools = {T1, T2, ..., Tm} 
Skills = {K1, K2, ..., Kp} 

Each Section Si is a subtask, and is further defined by a se-
quence of steps from the task instructions (Stepsi), the tools 
required by each participant (Toolsi), the type of skills re-
quired (Skillsi), the minimum (Mini) and maximum (Maxi) 
number of people that can work on the section, and the sec-
tions that must be complete for this section to begin (De-
pendenciesi): 

Si = {Stepsi, Toolsi, Skillsi, Maxi, Mini, Dependenciesi}, where:  

Stepsi = {step1i, step2i, ...., stepqi} 
Toolsi[j] = {x | Tool Tx is required by the jth user for section Si} 

Skillsi = {y | Skill Ky is required for section Si} 
Dependenciesi = {z | Section Sz is a dependency of section Si} 

The skills required for the task could be defined at a high 
level, such as experience with woodworking, or at a lower 
level, such as experience with specific tools. Mini is the 
minimum required number of people for a section, while 
Maxi is the maximum number of people that could be a use-
ful addition (D4). The set of tools for each step (Toolsi) is a 
set of sets, as each subsequent worker may require a differ-
ent set of tools. For example, if a second worker is required 
to hold a block while the first worker screws something in, 
then only the first worker needs a screwdriver. 

For any two sections, we also calculate their similarity as a 
value between 0 and 1. In our current implementation, simi-
larity is based on the number of common tools between the 
sections, to a maximum of 0.5, and is equal to 1 only if the 
sections are equivalent: 

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖, 𝑗 =
1, 𝑖𝑓 𝑆! ≝ 𝑆! ,

0.5
𝑇𝑜𝑜𝑙𝑠𝑖 ∩  𝑇𝑜𝑜𝑙𝑠𝑗

𝑀𝑎𝑥 𝑇𝑜𝑜𝑙𝑠𝑖 , 𝑇𝑜𝑜𝑙𝑠𝑗

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.   

Task Distribution Algorithm 
Our task distribution algorithm works on-the-fly: every 
time one or more users become available, it looks for the 
best section to assign to each available user (D1).  

Algorithm Parameters  
The algorithm includes two parameters whose values can 
vary between 0 and 1: these are task diversity and group 
priority. Both of these values can be adjusted with sliders 
on the dashboard at any time during the task. 

If task diversity is 1, the system prioritizes giving users a 
variety of subtasks, which can increase engagement, pro-
duce higher quality work, and prevent repetitive strain [19, 
29]. If task diversity is 0, workers are more likely to repeat 
the same or similar subtasks, which can help them learn 
specific skills and become more efficient [30]. 

If group priority is 1, the system biases towards assigning 
multiple workers to a section. If it is set to 0, the system 
prioritizes working individually. In cases where team build-
ing is particularly important, prioritizing group work may 
be preferred. In cases where it is important for workers to 
stay focused and quiet, individual work may be preferred. 

Each time the algorithm is triggered, it prioritizes diversity 
with a probability equal to the value of the task diversity 
parameter. Otherwise, it prioritizes repetition. Similarly, it 
prioritizes group work with a probability equal to group 
priority. Otherwise, it prioritizes individual work. 

Section Assignment Algorithm 
The section assignment algorithm is triggered any time 
there is a free user. This happens when the task is started, 
when a new user joins, and when any section is completed. 
A detailed example of the values calculated by this algo-
rithm is included in the Appendix. The algorithm generates 
a list of available users U = {u1, u2, …, un} who are not cur-
rently assigned to a section, and a list of available sections 
A = {S1, S2, …, Sm}. A section is considered available if its 
required tools are available, it is currently unassigned or in 
progress with less than its maximum number of workers, 
and all its dependencies are complete. For each free user ui, 
we build several lists Pi of priority values {pi1, pi2, …, piq} 
where pij is the priority value for assigning user ui to section 
Sj. We build one list for each of the following criteria: 

• Tree depth (PD): PD[j] is the depth of section Sj in the 
task tree. Sections with larger depth are prioritized be-
cause the further a section is down the task tree, the more 
sections that are potentially waiting on it to be completed. 

• Group (PG): If individual work is being prioritized, PG[j] 
is 1 for all unassigned sections (as these do not yet have 
anyone working on them) and 0 for all sections in pro-
gress (where the user would be joining an existing team). 
Otherwise, the opposite values are set. 



 

• Prior Experience (PE): PE[j] is the user’s self-rated ex-
perience (a value between 1 and 5) at the skill required by 
section Sj. If Sj requires multiple skills, it is the average of 
the user’s experience ratings at those skills. 

If the user has just completed a section Sc, we also create 
lists for the following criteria: 

• Next section (PN): PN[j] is 1 if section Sj is the next sec-
tion after Sc (it is its parent node), and 0 otherwise. This 
prioritizes overall continuity of assignments. 

• Repetition or diversity (PR): If repetition is being priori-
tized, PR[j] is the similarity value Similarity(j,c). Other-
wise, PR[j] is set to 1 - Similarity(j,c). 

• Speed (PS): This list prioritizes sections the user has al-
ready excelled at. For each available section Sj, we calcu-
late the average time all users have taken on all complet-
ed sections weighted their by similarity to Sj, and the av-
erage time the current user has taken. PS[j] is the differ-
ence between these two averages. 

To calculate the overall priority values Pitotal for each user 
ui, we normalize each list above and add the values together 
element-wise.  

Pitotal = PiD + PiG + PiE + PiN + PiR + PiS 

We then use a greedy algorithm to make the section as-
signments: we find the single highest priority value in all of 
the Ptotal lists across every user, and assign that user to the 
corresponding section. We then recalculate the list of avail-
able sections and repeat the above process for the remaining 
free users, until all users have been assigned. 

Initial Assignments 
When the task is first started, we can only consider the first 
three criteria above, as no sections have been completed: 

Pitotal = PiD + PiG + PiE 

However, we can still account for the task diversity slider 
value, by planning ahead. If repetition is being prioritized, 
we narrow down the list of available sections to a list of 
unique available sections, so that all users will be assigned 
to a different section, and thus more likely to repeat their 
section again later. Otherwise, we assign as many of the 
same section as possible to the available users so that each 
user will be less likely to repeat their section later. 

Asking for Help 
When a user presses the “get help” button, the section they 
are currently working on is added to a global list of sections 
that need help. The next time the algorithm runs, only sec-
tions in this help list are considered available. Each free 
user’s priorities are calculated as above, and the user with 
the highest priority is assigned to help with that section.  

Adapting to Users and Tools  
Our algorithm provides the flexibility for users to join or 
leave the task at any point, by logging in or exiting from the 
mobile interface. The system can also adapt to tools being 

added or removed from the work environment, for example 
if more tools are found or a tool breaks. To do this, a user 
must update the number of tools on the dashboard display.  

Implementation 
WeBuild is implemented as a Node.js application running 
on a local server. Task information is stored on the server in 
JSON format. The application uses web sockets to com-
municate with each mobile phone, implemented using the 
socket.io module. Any device with a web browser can join 
by navigating to the server’s IP address. 

STUDY 
To gain insights and an initial understanding of the impact 
of using WeBuild on a collaborative task, we conducted a 
between-subjects experiment comparing WeBuild to tradi-
tional paper manuals. Participants worked in groups of 5 on 
a custom designed task that combined LEGO assembly and 
simple woodworking. This served as an abstraction of a 
medium-sized task with a range of tools, materials, and 
required skills. We hypothesized that WeBuild would help 
groups complete the task more efficiently, and that it would 
reduce start-up time at the beginning of the task and coordi-
nation time between subtasks. 

Participants 
We recruited 40 participants (19 female, ages 18 - 54) from 
our institution and external recruitment lists. When signing 
up, participants were asked to rate their prior experience 
with LEGO and with hand tools (such as screwdrivers, 
wrenches, and hammers) from 1 (no experience) to 5 (very 
experienced). Participants were split into 8 groups of 5, 
with 4 groups in each condition. We balanced gender and 
prior experience across conditions and within each group 
(see Table 1 for a breakdown).  

Most participants had never met, however in 4 of the 8 
groups, two or three participants knew each other with 
varying degrees of familiarity (3 Control groups, 1 
WeBuild group). 

	 Female	 Male	 LEGO	Experience	 Tools	Experience	
Control	 8	 12	 3.2	 3.45	
WeBuild	 11	 9	 3.25	 3.45	
Total	 19	 21	 3.23	 3.45	

Table 1: Participants’ gender and experience by condition. 

The Task 
LEGO tasks are frequently used in assembly task research 
studies [2, 13, 23, 33] due to their relatively clear instruc-
tions and simple assembly procedure. However, we also 
wanted our task to include physical tools to diversify the 
required skills.  As such, we created a custom task that 
combines Funk et al.’s “pick-and-place” and “industrial 
assembly” task types [13]: it consists of several small 
LEGO models, several wooden displays of varying sizes, 
and a large table to hold the entire display (Figure 8). Build-
ing the wooden displays involves using a screwdriver, and 
building the table involves using a wrench. The table re-
quires two people to lift it once assembled.  



 

 
Figure 8: The final goal of the task used in our study. 

We used the manufacturer’s instructions for the LEGO 
models, and created our own step-by-step instructions for 
the table and displays. For the Control condition, the final 
instructions combined into a single booklet, which we have 
included as supplementary material for reference. For the 
WeBuild condition, the same instructions were entered into 
the system, along with the additional task information as 
previously described. We fixed the task diversity and group 
priority parameters to 0 for this study based on our 
knowledge of the task and the main goal of efficiency. We 
also disabled the “get help” feature as this task involved 
relatively small groups working in close quarters. 

Procedure 
At the start of each session, the experimenter explained the 
task to the group, and showed them a picture of the final 
goal. Participants were told to “work together to complete 
the task”. In the Control condition, each participant was 
given a copy of the full instruction booklet. Participants 
were given a brief overview of how the booklet was orga-
nized. In the WeBuild condition, each participant was given 
an iPhone 5C with WeBuild loaded. The experimenter gave 
a brief explanation of the dashboard display, and showed 
participants a quick example task to explain the mobile in-
terface. Participants in the WeBuild condition were then 
asked to log in, and rate their prior experience with the two 
skills involved in this task: LEGO and hand tools. Once all 
participants were ready, they were told to begin the task. 
When the entire group was satisfied that the task was com-
plete, it was marked as finished. Participants then filled out 
a post-task questionnaire.  

Measures 
Our metrics were in part informed by those used in other 
related studies [6, 21, 33, 42]. 

In both conditions, we computed the overall completion 
time from start to finish. We also computed start-up time as 
the time from when the group was told to start until all five 

participants had begun working on something. We also 
computed the start and end time for each section. WeBuild 
saved this information directly, and in the Control condition 
it was determined later by watching and coding video re-
cordings of the sessions. 

From this data, we were able to compute the fraction of the 
total time each person spent working on sections vs. not 
working (i.e. waiting or coordinating with others). From the 
video recordings, we also computed the amount of time the 
group spent working in silence, to see if the amount of con-
versation differed between conditions. 

We also measured the amount of parallel activity in each 
session using a similar calculation as Birnholtz et al. [6]: we 
split each session into 10-second time intervals and counted 
how many users were actively working during each interval 
(0-5). For each session, we averaged these scores across all 
intervals to determine the average amount of parallelism. 

In the post-task questionnaire, participants rated the overall 
success of their group, as well as their group’s efficiency 
and communication. Participants were also asked how 
aware they were throughout the task of their other team 
members’ progress. Participants in the WeBuild condition 
also provided feedback on the system. 

RESULTS 
Given the scale of this study, we did not expect to formally 
validate our approach, however the following summary will 
be useful in guiding further evaluations and improvements. 

Quantitative Results 
For all measures, an independent t-test was used to compare 
the means between conditions. On average, groups in the 
WeBuild condition completed the task faster (23m13s) than 
groups in the Control condition (24m38s), however this was 
not significant. Figure 9 shows the progress of all eight 
groups over time. There appears to be more variation in the 
progress of Control groups. Given our small sample size 
such results should be considered cautiously. 

The most significant observed difference between condi-
tions was in the start-up times: WeBuild groups took an 
average of 24 seconds to start up, while Control groups 
took an average of 204 seconds (t(6) = -5.64, p < 0.01) 
(Figure 10a). WeBuild groups also spent a significantly 
higher fraction of their total time working (86%) than Con-
trol groups (72%) (t(6) = 3.95, p < 0.01) (Figure 10b). Ac-
cordingly, WeBuild groups also exhibited significantly 
more parallel activity (mean 4.48) than Control groups 
(mean 3.77) (t(6) = 3.98, p < 0.01).  

On average, WeBuild groups spent more of their total time 
in silence (44%) than Control groups (25%), however this 
was not significant (t(6) = 1.59, p = 0.16) and may have 
also been influenced by the specific social dynamics of 
each group, including whether members knew each other. 

Participants’ answers to the post-task questions regarding 
success, efficiency, and communication did not differ sig-



 

nificantly across conditions (all had averages greater than 
4.5/5). However, there was a significant difference in 
awareness: WeBuild participants rated themselves as less 
aware (mean 3.35/5) than Control participants (mean 4.3/5) 
(t(38) = -3.45, p < 0.01). 

Overall, participants in the WeBuild condition responded 
positively to the system. The mean rating of WeBuild’s 
overall usefulness was 4.1/5 (SD 0.97). Participants felt 
WeBuild did a good job assigning tasks (mean 4.05/5, SD 
0.76), and that being able to step through instructions one 
by one was useful (mean 4.55/5, SD 0.69). However, rat-
ings were mixed on the usefulness of the dashboard display 
(mean 2.85/5, SD 1.42). 

Qualitative Results 

Observed Challenges 
Based on our observations, the Control groups seemed to 
have more confusion regarding which wooden pieces were 
for which display boards, and participants spent some time 
flipping back and forth in the instructions comparing differ-
ent sections.  

Overall, there were no major coordination issues, though in 
one Control session two participants ended up accidentally 
switching tasks, because one thought that the other had 
started working on their task when in fact they had not. 

 
Figure 9: The progress of each group, shown as the number of 

sections complete in every 10-second time interval. 

 
Figure 10: a) Task start-up time was significantly faster in the 
WeBuild condition. b) Groups in the WeBuild condition spent 
a larger fraction of their overall time working on the task (as 

opposed to waiting or coordinating). Error bars show 1 stand-
ard error from the mean. 

In the WeBuild groups, participants were sometimes as-
signed to join sections already in progress, especially near 
the end of the task when there were only a few sections left. 
This required additional coordination as the person already 
working on the section had to explain what they had done 
to the person joining. In several cases, the first person was 
almost finished, and so the second person was not able to 
help at all. 

Participant Feedback 
Most participants felt their group communicated effective-
ly. When asked how it could have been improved, partici-
pants in the Control condition suggested things like having 
one person be the “supervisor” to oversee group progress, 
and more explicit sharing of progress with each other. Sev-
eral WeBuild participants answered that communication 
was not necessary as the system managed the task for them.  

When asked how efficiency could have been improved, 
several Control participants mentioned that having more of 
an overall understanding of the task or spending more time 
talking through the instructions before starting would have 
been beneficial. WeBuild participants mentioned that some-
times having two people work on a task was unnecessary, 
and that when certain group members took longer than oth-
ers, there was time spent waiting at the end. 

Many WeBuild participants mentioned that the system was 
helpful as it allowed them to get started right away. As one 
participant stated, “You don’t need to think about the over-
all plan as much - you just focus on the task and assume it 
all works in the end”. Suggested improvements to the sys-
tem included giving participants who are waiting for a sec-
tion something to do, such as help out others or provide 
encouragement to the group; and providing more overview 
information on the phone itself, as participants tended not to 
look away from their phones to check the dashboard. 

DISCUSSION 
The results from this study highlight the potential for a task 
distribution system to help groups coordinate physical 
tasks. We observed positive results overall, but it is im-
portant to note that due to the scale of our study and task, 
these results are suggestive rather than definitive. Our re-
sults should be treated with caution, and further formal 
evaluation is needed. 

We predict that overall times did not differ as significantly 
as start-up times because once participants knew what sec-
tion to do, individual section completion times were similar 
across conditions. Since groups spent the majority of time 
working on the task, the effect of the coordination im-
provements were most apparent at the start, but dampened 
across the entire session. For larger tasks where more coor-
dination is necessary, we predict these benefits may be 
stronger. 

Most of the non-working time spent in the WeBuild condi-
tion was near the end of the task, when participants were 
waiting on one or two team members to finish their final 



 

section. This could potentially be reduced with an improved 
scheduling algorithm that estimates section completion 
times. Future implementations should also avoid assigning 
people to join tasks in progress unless assistance has been 
requested, as participants mostly found this inconvenient.  

An interesting result from the study was that workers had 
less overall awareness in the WeBuild condition, but did not 
seem to mind. Participants rarely looked at the dashboard 
display, with most looking at it only when they had nothing 
else to do. This demonstrates that the system successfully 
eliminated any required decision-making, and workers had 
faith in the sections they were assigned. It would be inter-
esting to study whether similar effects would be found for 
larger groups and real-world tasks where group members 
are likely more emotionally attached to the quality of the 
outcome.  

The overall positive response we received from WeBuild 
participants was promising. It is likely that by isolating in-
dividual sections, the task distribution system reduced the 
need for a global understanding of the task. This allowed 
participants to focus on their current section without worry-
ing about the rest, whereas Control participants had to 
spend time building an understanding of the overall task. 

One interesting topic our work raises is that there are more 
dimensions to group efficiency than task completion time. 
For example, our system provides the option of prioritizing 
repetition vs. diversity, each with its own trade-offs. Essen-
tially, this is an issue of division of labour which has a 
longstanding philosophical background: Marx believed that 
too much division and specialization would make workers 
less skilled overall and less motivated [28]. On the other 
hand, Kant believed this allowed workers to develop skills 
specific to their specialization and thus complete the work 
better [22]. We leave this choice to the users, so they can 
tailor the system to best fit their needs. Similarly, efficiency 
may not always be the main goal; for example product qual-
ity may be more important, in which case having someone 
rate the quality of each section could be a more useful crite-
rion than speed. 

LIMITATIONS AND FUTURE WORK 
In the future we hope to test the system with more complex 
tasks and larger groups. For such tasks, manual coordina-
tion would likely break down as the task and group size 
increased.  In particular, we believe our system could be 
adapted to large-scale efforts such as architectural construc-
tion [26] and volunteer disaster relief [27]. The main chal-
lenge of adapting to such scenarios would be creating an 
accurate task model.  

This issue points towards one of the main areas for future 
improvement. The system currently requires task infor-
mation and instructions to be manually entered. For each 
step of the instructions, an admin must enter an image of 
the step, information about the tools and people needed, and 
its dependencies. We have written a script that uses this 

information to segment the task into sections that can be 
completed independently. A simple interface for entering 
these inputs could aid with this process, by providing a fill-
able form that requests each type of information, and dis-
plays the previously entered steps for selecting dependen-
cies. Given the rapidly growing amount of instructional 
content that is represented electronically, and the increasing 
structure in online content (e.g. instructables.com), some of 
this information could potentially be extracted automatical-
ly instead. In addition, prior research on generating assem-
bly instructions automatically [2] could be extended to gen-
erate the required information for our task model. 

Another limitation is that our task model assumes the task 
can be represented as a tree, namely that every child node 
has one parent. However in some tasks, several different 
sections could be dependent on the same child section. A 
more general graph representation like those used in other 
related work [19, 39] could handle these cases. 

Regarding the distribution algorithm, it would be interesting 
to consider global optimizations in addition to our step-by-
step algorithm. Additional prior information such as esti-
mated completion times and more details about partici-
pants’ skills could help lead to an optimal task schedule. 
Furthermore, our algorithm currently weighs all criteria 
equally when making assignments. Tweaking the weight 
distribution could significantly impact the outcome.  

In terms of the user experience, WeBuild currently requires 
workers to manually advance through instructions. More 
adaptive support could be added by taking advantage of 
existing context-aware systems for automatically advancing 
instructions [3, 12, 34] and providing real-time error detec-
tion [17]. It would also be interesting to consider delivery 
of instructions through wearable devices such as smart 
watches [1, 26, 45] or head mounted displays [21, 38]. 

Our current system could also have the limitation that by 
reducing the amount of communication and awareness, 
group members find the process less enjoyable and social. 
Though none of our study participants mentioned this as a 
disadvantage, future work could consider allowing users the 
option to choose whom to collaborate with or which sub-
task to join. Other features such as the “get help” button 
could also be disabled as it was in our study to encourage 
more spontaneous collaboration. 

CONCLUSION 
Our initial study showed promising indications that 
WeBuild can help groups coordinate tasks. In addition to 
our suggestive results, we have contributed the design and 
implementation of an intelligent task distribution system 
that can potentially scale to larger complex tasks with an 
arbitrary number of workers. We also contributed a model 
for representing tasks and the information needed in order 
to make informed assignments of subtasks. We believe this 
research will serve as important groundwork for future ef-
forts in coordinating collocated workers for physical tasks. 
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APPENDIX 
In this section we provide a detailed walkthrough for one iteration of our task distribution algorithm, using a simplified ex-
ample task. We show the values calculated at each step of the algorithm to illustrate how the next assigned section is chosen. 
In this example, we assume that task diversity and group priority are both set to 0, as they were for our full study task. As-
sume we have two workers, X and Y. X is currently working on the Robot Body section, and Y has just finished the first Ro-
bot Shoulder section. The section assignment algorithm is triggered so that Y can be assigned a new section.  

 
We calculate the lists U of available users and A of available sections:  
U = {Y}  
A = {Robot Body, Robot Shoulder (2), Robot Arm, Robot Arm (2)} 

Note that Robot Body is included as an available section even though there is already a user working on it. This is because 
the maximum number of people that can work on this section (Maxi) is set to 2, so a second user could potentially join. 

Now, for user Y, we build a priority list for each criterion with priority values corresponding to each section in A: 

Tree Depth: PD = {3, 3, 2, 2} since the first two sections (Robot Body and Robot Shoulder (2)) are at a depth of 3 in the tree, 
and the next two (Robot Arm and Robot Arm (2)) are at a depth of two. 

Group: PG = {0, 1, 1, 1} since individual work is being prioritized, and Robot Body is the only section already in progress. 

Prior Experience: Assume user Y has an experience level of 3/5 with LEGO. Then PE = {3, 3, 3, 3}, since all sections re-
quire the LEGO skill. Since this list will be normalized later, prior experience in this case has no effect on the assignment.  

Next Section: PN = {0, 0, 0, 0} since the parent section of Robot Shoulder (which Y just completed) is not included in A, as 
it is still waiting on some other dependencies. 

Repetition or diversity: Since we are prioritizing repetition in this example, we set each value PR[j] to Similarity(j, c) where 
section Sc is the one Y just completed (Robot Shoulder). Therefore, PR = {0.5, 1, 0.5, 0.5} since the second section (Robot 
Shoulder (2)) is an exact copy of Robot Shoulder, and all other sections require the same number of tools as Sc (no tools). 

Speed: For this example, speed does not affect the section assignment. This is because the only completed section so far is 
Robot Shoulder, and it has only been completed once by user Y. Therefore, the difference between the average time all users 
have taken and the average time user Y has taken will be zero (since these times are the same). Therefore, PS = {0, 0, 0, 0}. 

To calculate the overall priority value PYtotal, we normalize each list above and add the values together element-wise: 

PYtotal  = PD + PG + PE + PN + PR + PS 
 = {0.3, 0.3, 0.2, 0.2} + {0, 0.3, 0.3, 0.3} + {0.25, 0.25, 0.25, 0.25} + {0, 0, 0, 0} + {0.2, 0.4, 0.2, 0.2} + {0, 0, 0, 0} 
 = {0.75, 1.25, 0.95, 0.95} 

The highest priority value in this list is the second one (1.25), so it corresponds with the second section in A: Robot Shoulder 
(2). User Y is therefore assigned to Robot Shoulder (2) as the next section. This is a sensible choice given the parameters we 
set, since we are prioritizing for repetition and this section is identical to the one user Y just completed. We can see that its 
higher value came primarily from PR, but also from PD and PG, since it is at the largest depth possible in the tree, and it is not 
already in progress and therefore will be completed individually. 


