

WeBuild: Automatically Distributing Assembly Tasks
Among Collocated Workers to Improve Coordination

C. Ailie Fraser1,2, Tovi Grossman1, George Fitzmaurice1

1Autodesk Research
{tovi.grossman, george.fitzmaurice}@autodesk.com

2Design Lab, UC San Diego
cafraser@cs.ucsd.edu

Figure 1: WeBuild helps collocated groups coordinate tasks. a) A group completes our study task with the help of WeBuild. b) A
shared dashboard display provides a task overview. c) Each user views personalized step-by-step instructions on a mobile phone.

ABSTRACT
Physical construction and assembly tasks are often carried
out by groups of collocated workers, and they can be diffi-
cult to coordinate. Group members must spend time decid-
ing how to split up the task, how to assign subtasks to each
other, and in what order subtasks should be completed. In-
formed by an observational study examining group coordi-
nation challenges, we built a task distribution system called
WeBuild. Our custom algorithm dynamically assigns sub-
tasks to workers in a group, taking into account factors such
as the dependencies between subtasks and the skills of each
group member. Each worker views personalized step-by-
step instructions on a mobile phone, while a dashboard vis-
ualizes the entire process. An initial study found that
WeBuild reduced the start-up time needed to coordinate and
begin a task, and provides direction for future research to
build on toward improving group efficiency and coordina-
tion for complex tasks.

Author Keywords
Task distribution; collaboration; coordination; assembly
instructions

ACM Classification Keywords
H.5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces.

INTRODUCTION
Physical building tasks, such as building construction, fur-
niture assembly, and toy kit construction, are often carried
out by groups of collocated workers. With the exception of
professional settings that involve a dedicated manager, the
coordination amongst workers can be a challenge. The
workers must spend time dividing and assigning tasks, lo-
cating and sharing tools, and figuring out how to execute
instructions. As a result, the time spent actually completing
the task may only be a fraction of the total time taken [44].

Traditional assembly instructions rarely indicate how mul-
tiple workers should collaborate (Figure 2a, b) or how the
task can be efficiently subdivided (Figure 2c). While aids
for physical assembly have been studied, they are often
developed for a single user scenario (e.g. [5, 17, 18, 34, 38,
43, 45]). Multiple users have been considered, but typically
with an expert providing remote assistance (e.g. [21, 23, 25,
33, 36]). With the exception of recent Crowdsourced Fabri-
cation research [26], little work has looked at how to pro-
vide dynamic assistance to a team of collocated workers.

Our work aims to bring the known benefits of task man-
agement systems [27, 29, 39] and interactive instructions
[1, 5, 17, 24] to the scenario of collocated group construc-
tion and assembly. We introduce WeBuild, a system that
automatically distributes subtasks among workers, taking
into account the workers’ skills, the dependencies between
subtasks, and the availability of tools, with the goal of im-
proving group efficiency and coordination (Figure 1).
WeBuild continuously adapts to the progress of the group
to ensure an efficient distribution of tasks. An initial study
found that WeBuild reduced the start-up time to coordinate
and begin a task by 88%, and though further formal valida-
tion is needed, our findings suggest that such a system can
improve group efficiency and satisfaction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI 2017, May 06-11, 2017, Denver, CO, USA
© 2017 ACM. ISBN 978-1-4503-4655-9/17/05...$15.00
DOI: http://dx.doi.org/10.1145/3025453.3026036

Figure 2: Instructions from an IKEA cabinet [46] (a) and a

JYSK shelf [47] (b) both show a 2-person requirement at the
beginning, but do not show where or how the second person
should help. c) Instructions for a microwave [48] show a se-

cond person helping for one step but no indication as to what
this additional person should do for the rest of the task.

The main contribution of our work is the design and im-
plementation of WeBuild. We also contribute a back-end
model for representing and subdividing physical task in-
structions, and an adaptive on-the-fly algorithm for distrib-
uting subtasks among workers. Finally we contribute obser-
vations and insights gathered from two studies, the first
being an observational study of group coordination chal-
lenges, and the second being a preliminary evaluation of
WeBuild as compared to a baseline condition of paper in-
structions. Our studies and implementations look at smaller-
scale static tasks, such as toy building and furniture assem-
bly, so we conclude by discussing how WeBuild could gen-
eralize to larger scales and more dynamically changing
tasks, such as architectural construction and disaster relief.

RELATED WORK
Our work has been guided and inspired by previous re-
search in the domains of physical task assistance, collabora-
tive task aids, and automatic task distribution.

Real-time Assistance for Physical Tasks
Static instructions such as online tutorials and paper manu-
als are a popular resource for physical tasks. However, the
burden is on the user to keep track of their progress and
evaluate whether they are following the instructions cor-
rectly. Dynamic, context-sensitive assistance has been
shown to help with these challenges by detecting user pro-
gress and stepping through instructions accordingly, and
providing real-time feedback to ensure that users complete
each step correctly [5, 17, 34, 43].

Researchers have explored several different modalities for
displaying such real-time assistance for physical tasks.
Wearable hands-free displays such as smartwatches have
been found to be promising for providing short, relevant
instructions [1, 26, 45]. Augmented reality, provided
through projections or head-mounted displays, can further
help to guide users through complex tasks [17, 18, 38, 43].
Alternatively, Knibbe et al. used a tabletop display to pro-
vide contextually relevant instructions for DIY tasks [24].

Our work similarly leverages both mobile devices and large
displays, but adapts these concepts to a multi-user scenario.

In terms of what type of task to use for evaluating such as-
sistive systems, Funk et al. proposed standardized bench-
mark tasks in two high-level categories: “pick-and-place”
(e.g. LEGO) and “industrial assembly” (e.g. using screws
and nails) [13]. The task used in our study is heavily based
on these benchmarks but is designed specifically for a
group of workers. Like Funk et al. [13, 14], we include our
full task instructions as supplementary material to similarly
serve as a potential benchmarking task or inspiration for
future group assembly work.

Collaborative Task Aids
Most research examining collaboration on physical tasks
has focused on improving remote collaboration, often be-
tween a worker and a remote expert [21, 23, 25, 33, 36].
For example, a remote helper’s presence can be improved
by displaying their hand gestures in 3D [36] or 2D video
[23, 33], and hands-free technology can help users com-
municate while actively working on the task [21]. Our work
focuses instead on collocated collaboration within a group
of users, none of whom may be an expert at the task.

There are few examples of aids for collocated collaborative
physical tasks. TurkDeck projects instructions onto the en-
vironment for a group of people arranging props in a haptic
virtual reality scene [10]. Lafreniere et al.’s work on
Crowdsourced Fabrication [26] advanced this to more com-
plex tasks, where a crowd of workers assembled a large
pavilion structure with dynamic assistance via smartwatch-
es. However, the system had each worker complete the ex-
act same task independently. This was done approximately
two hundred times, with little required coordination or col-
laboration. Our system considers tasks comprising many
different subtasks, each of which may involve different
tools and require different numbers of people.

Collocated group collaboration has also been studied for
other types of tasks such as brainstorming [11], decision-
making [6], problem solving [9, 20, 37, 41], and software
development [7]. While the main need of remote teams
tends to be improved communication [7], collocated teams
have been shown to mainly have need for improved task
structuring and scheduling [8, 11], documentation of pro-
gress [7], and awareness of others’ progress and overall task
status [9, 32, 41]. Our work, informed by these findings,
mainly focuses on task coordination and structuring, by
automating the distribution and management of subtasks.

Task Distribution
The general problem of task distribution is found in many
different domains, and it involves balancing a set of defined
constraints, dependencies, and goals, the specifics of which
depend on the domain at hand.

For example, with resource scheduling in operating sys-
tems, fair allocation is an important goal, and so random-
ized algorithms have been shown to work well [40]. For

software development and release planning, there are often
many different potentially conflicting criteria to optimize,
such as the various stakeholders’ opinions [16]. Greer &
Ruhe [16] presented a flexible algorithm that re-calculates
the optimal plan after each increment is complete, thus
adapting smoothly to changing circumstances.

Theoretically, this problem is known as the “resource-
constrained project scheduling problem”, and has been
widely researched (e.g. [4, 31]). For example, Artigues
showed that this problem can be framed as a combinatorial
optimization problem [4]. Our work differs slightly in that
we do not know the execution times of each subtask be-
forehand, but our formalization of the task model is similar.

In the industrial domain, physical assembly tasks are often
carried out by groups of robot workers. A large body of
work has focused on algorithms to optimally allocate tasks
(e.g. [15, 35, 39]). Human workers tend to be less predicta-
ble, so these algorithms do not translate directly, though our
own task model and algorithm were inspired by those used
in the robotic task planning literature.

In summary, despite the extensive research on aids for
physical assembly tasks, little work has been done to under-
stand and aid in the challenges associated with coordinating
a group of collocated workers for completing such tasks.

OBSERVATIONAL STUDY
To improve our understanding of the current challenges
groups face and the strategies they use when collaborating
on physical tasks, we conducted an exploratory observa-
tional study. To avoid constraining our findings and design
goals to one specific task, we used two different tasks: two
groups built a Meccano Tower Bridge set [49], and two
groups built an IKEA cabinet [50].

Participants
We recruited 16 participants from our organization (4 fe-
male, ages 18 - 54) and split them into groups of four. All
participants had at least some experience working with
hand tools (mean 3.75/5, SD 0.86, where 1 = never used,
and 5 = use all the time). Participants had limited experi-
ence working with IKEA and Meccano specifically: IKEA
participants’ mean experience was 2.63/5 (SD 0.74), and
Meccano participants’ mean was 1.25/5 (SD 0.46). In each
group, some participants knew each other well, while others
had never met.

Procedure
Each group was given four copies of the instruction book-
lets for their task. All of the required tools were provided,
with enough tools for four people to work simultaneously
on any individual step if they chose to do so. The IKEA
task required screwdrivers and a hammer, and the Meccano
task required a small wrench and a screwdriver.

Groups were told to accomplish as much of the task as they
could within one hour. An experimenter took notes and
observed group dynamics. After the session, each partici-

pant completed a questionnaire reflecting on how the ses-
sion went and how they felt it could have been improved, as
well as providing demographic information and details
about their prior building experience. Observations and
participant responses were analyzed to highlight recurrent
themes and behaviours.

Observations

Task Distribution
All groups spent several minutes of initial “start-up time”
figuring out how the different components of the task fit
together and deciding how to split up the task. In both Mec-
cano groups, each person worked on one of the four main
towers. Both IKEA groups initially divided into two pairs,
one building the cabinet body, and one building the four
drawers (Figure 3). Once these main IKEA components
were finished, additional time was spent figuring out which
of the remaining components to do next. The distribution of
the remaining subtasks varied between the two groups, as
the optimal order to complete them in was not obvious.

Task distribution and collaboration strategies also varied
between pairs. For those working on the IKEA drawers, one
pair opted to build each drawer together one at a time, while
the other opted to build the first drawer together, and the
next two in parallel. The former group was more successful,
as in the latter group, one participant worked ahead on their
drawer while the other got stuck on an earlier step. Some
time was lost before the first participant noticed and helped
the second.

In the IKEA task, a few steps required two people to work
together (e.g. lifting and positioning the large cabinet
walls). However, we noticed that having two people work
on a single-person subtask was often advantageous. For
example, participants building the cabinet body would sim-
ultaneously screw in screws on opposite sides of the cabi-
net, eliminating the need for one participant to move around
to both sides after completing each step.

Figure 3: A group in our observational study split into pairs to

build the IKEA cabinet.

In general, once a person had completed a step or subtask
once, they were able to do it again faster and more easily.
Sometimes the group would recognize this and delegate a
subtask to someone who had done it already. Several partic-
ipants mentioned afterward that an “assembly line” setup
might have been more efficient, as each group member
could become a “specialist” at certain subtasks. However,
figuring out how to distribute the tasks in this way would
have taken longer as it would require a deeper understand-
ing of the required subtasks from the onset.

Communication
Overall, communication was strong within pairs but weaker
across the group. Participants working on the same subtask
communicated frequently, asking each other questions,
helping each other complete tricky steps, and gathering
tools and parts for each other. There was less communica-
tion across the entire group, and several participants men-
tioned afterward that they wished they had been more
aware of the status of the other pair on their team. This
could potentially have helped with the challenge of task
distribution, as not knowing what stage the other pair was at
made it more difficult to decide what subtask to do next.

Prior Experience
Some participants seemed to be naturally suited for certain
types of tasks. In some cases, this was due to prior experi-
ence (e.g. knowing how IKEA locking screws work). How-
ever, in other cases users exhibited inherent skills. One par-
ticipant with smaller hands was better at a particularly fin-
icky Meccano step. Another participant with no prior IKEA
experience was better at assembling drawers than other
participants who had some experience, which could be due
to exceptional problem-solving or spatial reasoning skills.

DESIGN GOALS
Our observational study validated our belief that coordinat-
ing physical tasks in a group can be challenging and thus an
automatic task distribution system would be useful. Based
on our observations, and guided by our review of the litera-
ture, we derived a set of design goals for an intelligent task
distribution system.

D1. Continuously Adapt to the Situation and Workers
While task allocation systems for robot workers can gener-
ate optimal distribution plans before the task has begun
[39], a system for human workers must account for the un-
predictability and individual differences of humans. It
should therefore continuously adapt to the group’s progress
rather than determine a global schedule. For example, if one
worker is faster at a certain subtask, the system should as-
sign future similar subtasks to that worker. The system
should also account for users’ prior experience [27].

D2. Provide a Task Overview and Promote Awareness
Several participants mentioned a desire for more knowledge
of the overall context of their current subtask, as well as
more awareness of other group members’ progress. This
need for task and group awareness has also been well doc-
umented in the literature [8, 9, 41].

D3. Display Step-by-Step Instructions to Each Worker
As the literature on software tutorials (e.g. [12]) and physi-
cal task assistance (e.g. [24, 26]) has shown, it is beneficial
for participants to see instructions one step at a time, to help
them stay on track and know what is next without having to
hunt through an instruction booklet.

D4. Support Adaptive Teamwork
Participants in our study frequently grouped into pairs, as
having someone to talk to and compare work with was of-
ten helpful. An intelligent task distribution system should
therefore support dynamic formation of sub-teams. The
system should be aware of which subtasks should be done
individually, and which can be aided by multiple workers,
and assign subtasks accordingly.

WEBUILD: SYSTEM DESCRIPTION
Guided by the above design goals, we built a task distribu-
tion system called WeBuild. The goal of the WeBuild sys-
tem is to help groups complete physical assembly tasks
more efficiently, and to alleviate some of the coordination
challenges that may otherwise be present. WeBuild takes in
the step-by-step instructions for a task as input, including
details about step dependencies, required tools, and associ-
ated skills, and it automatically assigns subtasks to workers.
The algorithm works adaptively, only assigning the next
subtask once a previous one is complete. The task instruc-
tions and details must be manually entered; our work as-
sumes such information would be available, allowing us to
focus on the system design and behaviour.

Range of Tasks Supported
WeBuild is designed to support assembly tasks that can be
represented with static step-by-step instructions. These in-
clude group furniture building (e.g. assembling an IKEA
kitchen), large art installations (e.g. pavilions), controlled
construction projects (e.g. building a prefabricated house),
or high-quantity manual tasks (e.g. circuit board assembly).
It does not currently support dynamic tasks where the end
goal may change or there are external uncontrollable varia-
bles (e.g. disaster relief and volunteer habitat building),
though we aim to provide the groundwork for future re-
search to explore these possibilities.

WeBuild is usable by both groups of workers who are fa-
miliar with each other, and groups of strangers. We predict
that WeBuild will be particularly useful in situations where
groups do not know each other (e.g. [26]) and are likely to
find collaboration more challenging.

System Overview
WeBuild comprises a central server, a dashboard display,
and a mobile smartphone for each group member (Figure
4). The central server can be any laptop or desktop in the
work area. The system can scale to any number of workers,
and can adapt to workers entering or exiting mid-task. The
dashboard displays the overall process and structure of the
task, to help support group awareness. Each worker’s mo-
bile phone displays instructions for their current subtask.

Figure 4: The WeBuild system architecture.

Task Initialization
Before the task can begin, a group member must specify
how many of each required tool the group has available on
the central server. Clicking “Start” begins the task, at which
point the system begins allocating subtasks to all users.

Dashboard Display
The dashboard display provides high-level task information
to promote group awareness (D2) (Figure 1b).

The left side displays a progress bar, parameter sliders, a
photo of the final goal, and information about each user and
tool (Figure 5). The “Team Members” section shows the
names and statuses of all users, including which section of
the task they are currently working on. The “Tools” section
displays the tools required for the task, how many of each
are in use or available, and buttons to update their quantity.

The right side of the dashboard displays the task overview
in a tree representation, broken down into sections (Figure
6). The tree is structured by dependencies, with the root at
the top being the final section, and the child nodes being the
sections required for a parent node to be started.

Individual User View
Each group member uses a mobile phone to access an indi-
vidual view (Figure 7). We chose mobile phones over
smartwatches [1, 26] because of their ubiquity and larger
screen real estate for displaying graphical instructions.

Each user connects to the IP address of the server, and logs
in by entering their name, choosing a colour to be repre-
sented by, and rating their prior experience at each needed
skill. Our algorithm uses this information to ensure that
users are more likely to be assigned to tasks they are famil-
iar with (D1).

The device informs the user when they are assigned to a
section, and displays a photo of the section and its required
tools (Figure 7a). Once the user has collected the tools and
pressed the confirmation button, the instructions are shown
one step at a time (Figure 7b). Users proceed through the
steps manually using the “Next” and “Back” buttons (D3).
Once the user completes the last step of the section, the
system prompts them to confirm that they are finished, and
displays a photo of the completed section to check their
work against (Figure 7c).

Figure 5: The left side of the dashboard displays a progress
bar, parameter sliders, a photo of the final goal, and infor-

mation about each user and the available tools.

 Figure 6: The right side of the dashboard displays a tree rep-
resentation of the task. Green nodes have no dependencies and
are therefore ready to be assigned. Red X nodes are waiting on

their dependencies and therefore cannot be assigned yet.
Completed nodes and nodes in progress show the colour(s) of

the assigned worker(s).

Figure 7: The WeBuild mobile interface. a) The user has been

assigned a section and must gather the tools to start. b) The
user is working on a section, and views each step one at a time.

c) The user has finished their section, and must confirm it is
complete.

When multiple users are assigned to work on a section to-
gether, the display shows who is on their sub-team and in-
structs them to find each other. Once one of the users press-
es the confirmation button to begin the section, all of the
sub-team members’ screens are synchronized to show the
same step. For added validation, all members of the sub-
team must confirm when the subtask has been completed.

If a user or group is stuck during a section, they can ask for
help (Figure 7b). The next available user will then be as-
signed to join that section. At any time, a user can click
“Exit” to leave the task entirely, at which point the system
logs them out and reassigns the task they were working on.

Task Model
A prerequisite of our system is that a representation of the
task already exists within the system. In our current imple-
mentation, this information is entered manually.

We developed a novel task representation based on similar
models in the literature [4, 19, 27, 39]. A task T can be for-
mally defined by the sets of sections, tools, and skills it is
composed of:

T = {Sections, Tools, Skills}, where:

Sections = {S1, S2, ..., Sn}
Tools = {T1, T2, ..., Tm}
Skills = {K1, K2, ..., Kp}

Each Section Si is a subtask, and is further defined by a se-
quence of steps from the task instructions (Stepsi), the tools
required by each participant (Toolsi), the type of skills re-
quired (Skillsi), the minimum (Mini) and maximum (Maxi)
number of people that can work on the section, and the sec-
tions that must be complete for this section to begin (De-
pendenciesi):

Si = {Stepsi, Toolsi, Skillsi, Maxi, Mini, Dependenciesi}, where:

Stepsi = {step1i, step2i,, stepqi}
Toolsi[j] = {x | Tool Tx is required by the jth user for section Si}

Skillsi = {y | Skill Ky is required for section Si}
Dependenciesi = {z | Section Sz is a dependency of section Si}

The skills required for the task could be defined at a high
level, such as experience with woodworking, or at a lower
level, such as experience with specific tools. Mini is the
minimum required number of people for a section, while
Maxi is the maximum number of people that could be a use-
ful addition (D4). The set of tools for each step (Toolsi) is a
set of sets, as each subsequent worker may require a differ-
ent set of tools. For example, if a second worker is required
to hold a block while the first worker screws something in,
then only the first worker needs a screwdriver.

For any two sections, we also calculate their similarity as a
value between 0 and 1. In our current implementation, simi-
larity is based on the number of common tools between the
sections, to a maximum of 0.5, and is equal to 1 only if the
sections are equivalent:

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖, 𝑗 =
1, 𝑖𝑓 𝑆! ≝ 𝑆! ,

0.5
𝑇𝑜𝑜𝑙𝑠𝑖 ∩ 𝑇𝑜𝑜𝑙𝑠𝑗

𝑀𝑎𝑥 𝑇𝑜𝑜𝑙𝑠𝑖 , 𝑇𝑜𝑜𝑙𝑠𝑗

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Task Distribution Algorithm
Our task distribution algorithm works on-the-fly: every
time one or more users become available, it looks for the
best section to assign to each available user (D1).

Algorithm Parameters
The algorithm includes two parameters whose values can
vary between 0 and 1: these are task diversity and group
priority. Both of these values can be adjusted with sliders
on the dashboard at any time during the task.

If task diversity is 1, the system prioritizes giving users a
variety of subtasks, which can increase engagement, pro-
duce higher quality work, and prevent repetitive strain [19,
29]. If task diversity is 0, workers are more likely to repeat
the same or similar subtasks, which can help them learn
specific skills and become more efficient [30].

If group priority is 1, the system biases towards assigning
multiple workers to a section. If it is set to 0, the system
prioritizes working individually. In cases where team build-
ing is particularly important, prioritizing group work may
be preferred. In cases where it is important for workers to
stay focused and quiet, individual work may be preferred.

Each time the algorithm is triggered, it prioritizes diversity
with a probability equal to the value of the task diversity
parameter. Otherwise, it prioritizes repetition. Similarly, it
prioritizes group work with a probability equal to group
priority. Otherwise, it prioritizes individual work.

Section Assignment Algorithm
The section assignment algorithm is triggered any time
there is a free user. This happens when the task is started,
when a new user joins, and when any section is completed.
A detailed example of the values calculated by this algo-
rithm is included in the Appendix. The algorithm generates
a list of available users U = {u1, u2, …, un} who are not cur-
rently assigned to a section, and a list of available sections
A = {S1, S2, …, Sm}. A section is considered available if its
required tools are available, it is currently unassigned or in
progress with less than its maximum number of workers,
and all its dependencies are complete. For each free user ui,
we build several lists Pi of priority values {pi1, pi2, …, piq}
where pij is the priority value for assigning user ui to section
Sj. We build one list for each of the following criteria:

• Tree depth (PD): PD[j] is the depth of section Sj in the
task tree. Sections with larger depth are prioritized be-
cause the further a section is down the task tree, the more
sections that are potentially waiting on it to be completed.

• Group (PG): If individual work is being prioritized, PG[j]
is 1 for all unassigned sections (as these do not yet have
anyone working on them) and 0 for all sections in pro-
gress (where the user would be joining an existing team).
Otherwise, the opposite values are set.

• Prior Experience (PE): PE[j] is the user’s self-rated ex-
perience (a value between 1 and 5) at the skill required by
section Sj. If Sj requires multiple skills, it is the average of
the user’s experience ratings at those skills.

If the user has just completed a section Sc, we also create
lists for the following criteria:

• Next section (PN): PN[j] is 1 if section Sj is the next sec-
tion after Sc (it is its parent node), and 0 otherwise. This
prioritizes overall continuity of assignments.

• Repetition or diversity (PR): If repetition is being priori-
tized, PR[j] is the similarity value Similarity(j,c). Other-
wise, PR[j] is set to 1 - Similarity(j,c).

• Speed (PS): This list prioritizes sections the user has al-
ready excelled at. For each available section Sj, we calcu-
late the average time all users have taken on all complet-
ed sections weighted their by similarity to Sj, and the av-
erage time the current user has taken. PS[j] is the differ-
ence between these two averages.

To calculate the overall priority values Pitotal for each user
ui, we normalize each list above and add the values together
element-wise.

Pitotal = PiD + PiG + PiE + PiN + PiR + PiS

We then use a greedy algorithm to make the section as-
signments: we find the single highest priority value in all of
the Ptotal lists across every user, and assign that user to the
corresponding section. We then recalculate the list of avail-
able sections and repeat the above process for the remaining
free users, until all users have been assigned.

Initial Assignments
When the task is first started, we can only consider the first
three criteria above, as no sections have been completed:

Pitotal = PiD + PiG + PiE

However, we can still account for the task diversity slider
value, by planning ahead. If repetition is being prioritized,
we narrow down the list of available sections to a list of
unique available sections, so that all users will be assigned
to a different section, and thus more likely to repeat their
section again later. Otherwise, we assign as many of the
same section as possible to the available users so that each
user will be less likely to repeat their section later.

Asking for Help
When a user presses the “get help” button, the section they
are currently working on is added to a global list of sections
that need help. The next time the algorithm runs, only sec-
tions in this help list are considered available. Each free
user’s priorities are calculated as above, and the user with
the highest priority is assigned to help with that section.

Adapting to Users and Tools
Our algorithm provides the flexibility for users to join or
leave the task at any point, by logging in or exiting from the
mobile interface. The system can also adapt to tools being

added or removed from the work environment, for example
if more tools are found or a tool breaks. To do this, a user
must update the number of tools on the dashboard display.

Implementation
WeBuild is implemented as a Node.js application running
on a local server. Task information is stored on the server in
JSON format. The application uses web sockets to com-
municate with each mobile phone, implemented using the
socket.io module. Any device with a web browser can join
by navigating to the server’s IP address.

STUDY
To gain insights and an initial understanding of the impact
of using WeBuild on a collaborative task, we conducted a
between-subjects experiment comparing WeBuild to tradi-
tional paper manuals. Participants worked in groups of 5 on
a custom designed task that combined LEGO assembly and
simple woodworking. This served as an abstraction of a
medium-sized task with a range of tools, materials, and
required skills. We hypothesized that WeBuild would help
groups complete the task more efficiently, and that it would
reduce start-up time at the beginning of the task and coordi-
nation time between subtasks.

Participants
We recruited 40 participants (19 female, ages 18 - 54) from
our institution and external recruitment lists. When signing
up, participants were asked to rate their prior experience
with LEGO and with hand tools (such as screwdrivers,
wrenches, and hammers) from 1 (no experience) to 5 (very
experienced). Participants were split into 8 groups of 5,
with 4 groups in each condition. We balanced gender and
prior experience across conditions and within each group
(see Table 1 for a breakdown).

Most participants had never met, however in 4 of the 8
groups, two or three participants knew each other with
varying degrees of familiarity (3 Control groups, 1
WeBuild group).

	 Female	 Male	 LEGO	Experience	 Tools	Experience	
Control	 8	 12	 3.2	 3.45	
WeBuild	 11	 9	 3.25	 3.45	
Total	 19	 21	 3.23	 3.45	

Table 1: Participants’ gender and experience by condition.

The Task
LEGO tasks are frequently used in assembly task research
studies [2, 13, 23, 33] due to their relatively clear instruc-
tions and simple assembly procedure. However, we also
wanted our task to include physical tools to diversify the
required skills. As such, we created a custom task that
combines Funk et al.’s “pick-and-place” and “industrial
assembly” task types [13]: it consists of several small
LEGO models, several wooden displays of varying sizes,
and a large table to hold the entire display (Figure 8). Build-
ing the wooden displays involves using a screwdriver, and
building the table involves using a wrench. The table re-
quires two people to lift it once assembled.

Figure 8: The final goal of the task used in our study.

We used the manufacturer’s instructions for the LEGO
models, and created our own step-by-step instructions for
the table and displays. For the Control condition, the final
instructions combined into a single booklet, which we have
included as supplementary material for reference. For the
WeBuild condition, the same instructions were entered into
the system, along with the additional task information as
previously described. We fixed the task diversity and group
priority parameters to 0 for this study based on our
knowledge of the task and the main goal of efficiency. We
also disabled the “get help” feature as this task involved
relatively small groups working in close quarters.

Procedure
At the start of each session, the experimenter explained the
task to the group, and showed them a picture of the final
goal. Participants were told to “work together to complete
the task”. In the Control condition, each participant was
given a copy of the full instruction booklet. Participants
were given a brief overview of how the booklet was orga-
nized. In the WeBuild condition, each participant was given
an iPhone 5C with WeBuild loaded. The experimenter gave
a brief explanation of the dashboard display, and showed
participants a quick example task to explain the mobile in-
terface. Participants in the WeBuild condition were then
asked to log in, and rate their prior experience with the two
skills involved in this task: LEGO and hand tools. Once all
participants were ready, they were told to begin the task.
When the entire group was satisfied that the task was com-
plete, it was marked as finished. Participants then filled out
a post-task questionnaire.

Measures
Our metrics were in part informed by those used in other
related studies [6, 21, 33, 42].

In both conditions, we computed the overall completion
time from start to finish. We also computed start-up time as
the time from when the group was told to start until all five

participants had begun working on something. We also
computed the start and end time for each section. WeBuild
saved this information directly, and in the Control condition
it was determined later by watching and coding video re-
cordings of the sessions.

From this data, we were able to compute the fraction of the
total time each person spent working on sections vs. not
working (i.e. waiting or coordinating with others). From the
video recordings, we also computed the amount of time the
group spent working in silence, to see if the amount of con-
versation differed between conditions.

We also measured the amount of parallel activity in each
session using a similar calculation as Birnholtz et al. [6]: we
split each session into 10-second time intervals and counted
how many users were actively working during each interval
(0-5). For each session, we averaged these scores across all
intervals to determine the average amount of parallelism.

In the post-task questionnaire, participants rated the overall
success of their group, as well as their group’s efficiency
and communication. Participants were also asked how
aware they were throughout the task of their other team
members’ progress. Participants in the WeBuild condition
also provided feedback on the system.

RESULTS
Given the scale of this study, we did not expect to formally
validate our approach, however the following summary will
be useful in guiding further evaluations and improvements.

Quantitative Results
For all measures, an independent t-test was used to compare
the means between conditions. On average, groups in the
WeBuild condition completed the task faster (23m13s) than
groups in the Control condition (24m38s), however this was
not significant. Figure 9 shows the progress of all eight
groups over time. There appears to be more variation in the
progress of Control groups. Given our small sample size
such results should be considered cautiously.

The most significant observed difference between condi-
tions was in the start-up times: WeBuild groups took an
average of 24 seconds to start up, while Control groups
took an average of 204 seconds (t(6) = -5.64, p < 0.01)
(Figure 10a). WeBuild groups also spent a significantly
higher fraction of their total time working (86%) than Con-
trol groups (72%) (t(6) = 3.95, p < 0.01) (Figure 10b). Ac-
cordingly, WeBuild groups also exhibited significantly
more parallel activity (mean 4.48) than Control groups
(mean 3.77) (t(6) = 3.98, p < 0.01).

On average, WeBuild groups spent more of their total time
in silence (44%) than Control groups (25%), however this
was not significant (t(6) = 1.59, p = 0.16) and may have
also been influenced by the specific social dynamics of
each group, including whether members knew each other.

Participants’ answers to the post-task questions regarding
success, efficiency, and communication did not differ sig-

nificantly across conditions (all had averages greater than
4.5/5). However, there was a significant difference in
awareness: WeBuild participants rated themselves as less
aware (mean 3.35/5) than Control participants (mean 4.3/5)
(t(38) = -3.45, p < 0.01).

Overall, participants in the WeBuild condition responded
positively to the system. The mean rating of WeBuild’s
overall usefulness was 4.1/5 (SD 0.97). Participants felt
WeBuild did a good job assigning tasks (mean 4.05/5, SD
0.76), and that being able to step through instructions one
by one was useful (mean 4.55/5, SD 0.69). However, rat-
ings were mixed on the usefulness of the dashboard display
(mean 2.85/5, SD 1.42).

Qualitative Results

Observed Challenges
Based on our observations, the Control groups seemed to
have more confusion regarding which wooden pieces were
for which display boards, and participants spent some time
flipping back and forth in the instructions comparing differ-
ent sections.

Overall, there were no major coordination issues, though in
one Control session two participants ended up accidentally
switching tasks, because one thought that the other had
started working on their task when in fact they had not.

Figure 9: The progress of each group, shown as the number of

sections complete in every 10-second time interval.

Figure 10: a) Task start-up time was significantly faster in the
WeBuild condition. b) Groups in the WeBuild condition spent
a larger fraction of their overall time working on the task (as

opposed to waiting or coordinating). Error bars show 1 stand-
ard error from the mean.

In the WeBuild groups, participants were sometimes as-
signed to join sections already in progress, especially near
the end of the task when there were only a few sections left.
This required additional coordination as the person already
working on the section had to explain what they had done
to the person joining. In several cases, the first person was
almost finished, and so the second person was not able to
help at all.

Participant Feedback
Most participants felt their group communicated effective-
ly. When asked how it could have been improved, partici-
pants in the Control condition suggested things like having
one person be the “supervisor” to oversee group progress,
and more explicit sharing of progress with each other. Sev-
eral WeBuild participants answered that communication
was not necessary as the system managed the task for them.

When asked how efficiency could have been improved,
several Control participants mentioned that having more of
an overall understanding of the task or spending more time
talking through the instructions before starting would have
been beneficial. WeBuild participants mentioned that some-
times having two people work on a task was unnecessary,
and that when certain group members took longer than oth-
ers, there was time spent waiting at the end.

Many WeBuild participants mentioned that the system was
helpful as it allowed them to get started right away. As one
participant stated, “You don’t need to think about the over-
all plan as much - you just focus on the task and assume it
all works in the end”. Suggested improvements to the sys-
tem included giving participants who are waiting for a sec-
tion something to do, such as help out others or provide
encouragement to the group; and providing more overview
information on the phone itself, as participants tended not to
look away from their phones to check the dashboard.

DISCUSSION
The results from this study highlight the potential for a task
distribution system to help groups coordinate physical
tasks. We observed positive results overall, but it is im-
portant to note that due to the scale of our study and task,
these results are suggestive rather than definitive. Our re-
sults should be treated with caution, and further formal
evaluation is needed.

We predict that overall times did not differ as significantly
as start-up times because once participants knew what sec-
tion to do, individual section completion times were similar
across conditions. Since groups spent the majority of time
working on the task, the effect of the coordination im-
provements were most apparent at the start, but dampened
across the entire session. For larger tasks where more coor-
dination is necessary, we predict these benefits may be
stronger.

Most of the non-working time spent in the WeBuild condi-
tion was near the end of the task, when participants were
waiting on one or two team members to finish their final

section. This could potentially be reduced with an improved
scheduling algorithm that estimates section completion
times. Future implementations should also avoid assigning
people to join tasks in progress unless assistance has been
requested, as participants mostly found this inconvenient.

An interesting result from the study was that workers had
less overall awareness in the WeBuild condition, but did not
seem to mind. Participants rarely looked at the dashboard
display, with most looking at it only when they had nothing
else to do. This demonstrates that the system successfully
eliminated any required decision-making, and workers had
faith in the sections they were assigned. It would be inter-
esting to study whether similar effects would be found for
larger groups and real-world tasks where group members
are likely more emotionally attached to the quality of the
outcome.

The overall positive response we received from WeBuild
participants was promising. It is likely that by isolating in-
dividual sections, the task distribution system reduced the
need for a global understanding of the task. This allowed
participants to focus on their current section without worry-
ing about the rest, whereas Control participants had to
spend time building an understanding of the overall task.

One interesting topic our work raises is that there are more
dimensions to group efficiency than task completion time.
For example, our system provides the option of prioritizing
repetition vs. diversity, each with its own trade-offs. Essen-
tially, this is an issue of division of labour which has a
longstanding philosophical background: Marx believed that
too much division and specialization would make workers
less skilled overall and less motivated [28]. On the other
hand, Kant believed this allowed workers to develop skills
specific to their specialization and thus complete the work
better [22]. We leave this choice to the users, so they can
tailor the system to best fit their needs. Similarly, efficiency
may not always be the main goal; for example product qual-
ity may be more important, in which case having someone
rate the quality of each section could be a more useful crite-
rion than speed.

LIMITATIONS AND FUTURE WORK
In the future we hope to test the system with more complex
tasks and larger groups. For such tasks, manual coordina-
tion would likely break down as the task and group size
increased. In particular, we believe our system could be
adapted to large-scale efforts such as architectural construc-
tion [26] and volunteer disaster relief [27]. The main chal-
lenge of adapting to such scenarios would be creating an
accurate task model.

This issue points towards one of the main areas for future
improvement. The system currently requires task infor-
mation and instructions to be manually entered. For each
step of the instructions, an admin must enter an image of
the step, information about the tools and people needed, and
its dependencies. We have written a script that uses this

information to segment the task into sections that can be
completed independently. A simple interface for entering
these inputs could aid with this process, by providing a fill-
able form that requests each type of information, and dis-
plays the previously entered steps for selecting dependen-
cies. Given the rapidly growing amount of instructional
content that is represented electronically, and the increasing
structure in online content (e.g. instructables.com), some of
this information could potentially be extracted automatical-
ly instead. In addition, prior research on generating assem-
bly instructions automatically [2] could be extended to gen-
erate the required information for our task model.

Another limitation is that our task model assumes the task
can be represented as a tree, namely that every child node
has one parent. However in some tasks, several different
sections could be dependent on the same child section. A
more general graph representation like those used in other
related work [19, 39] could handle these cases.

Regarding the distribution algorithm, it would be interesting
to consider global optimizations in addition to our step-by-
step algorithm. Additional prior information such as esti-
mated completion times and more details about partici-
pants’ skills could help lead to an optimal task schedule.
Furthermore, our algorithm currently weighs all criteria
equally when making assignments. Tweaking the weight
distribution could significantly impact the outcome.

In terms of the user experience, WeBuild currently requires
workers to manually advance through instructions. More
adaptive support could be added by taking advantage of
existing context-aware systems for automatically advancing
instructions [3, 12, 34] and providing real-time error detec-
tion [17]. It would also be interesting to consider delivery
of instructions through wearable devices such as smart
watches [1, 26, 45] or head mounted displays [21, 38].

Our current system could also have the limitation that by
reducing the amount of communication and awareness,
group members find the process less enjoyable and social.
Though none of our study participants mentioned this as a
disadvantage, future work could consider allowing users the
option to choose whom to collaborate with or which sub-
task to join. Other features such as the “get help” button
could also be disabled as it was in our study to encourage
more spontaneous collaboration.

CONCLUSION
Our initial study showed promising indications that
WeBuild can help groups coordinate tasks. In addition to
our suggestive results, we have contributed the design and
implementation of an intelligent task distribution system
that can potentially scale to larger complex tasks with an
arbitrary number of workers. We also contributed a model
for representing tasks and the information needed in order
to make informed assignments of subtasks. We believe this
research will serve as important groundwork for future ef-
forts in coordinating collocated workers for physical tasks.

REFERENCES
1. Mario Aehnelt and Bodo Urban. 2014. Follow-Me:

Smartwatch Assistance on the Shop Floor. In HCI in
Business. Springer International Publishing, 279–287.
http://doi.org/10.1007/978-3-319-07293-7_27

2. Maneesh Agrawala, Doantam Phan, Julie Heiser, et al.
2003. Designing effective step-by-step assembly
instructions. ACM SIGGRAPH 2003 Papers on -
SIGGRAPH ’03, ACM Press, 828.
http://doi.org/10.1145/1201775.882352

3. Stavros Antifakos, Florian Michahelles, and Bernt
Schiele. 2002. Proactive Instructions for Furniture
Assembly. In UbiComp 2002: Ubiquitous Computing.
Springer Berlin Heidelberg, 351–360.
http://doi.org/10.1007/3-540-45809-3_27

4. Christian Artigues. 2008. The Resource-Constrained
Project Scheduling Problem. In Resource-Constrained
Project Scheduling, Christian Artigues, Sophie
Demassey and Emmanuel Nron (eds.). ISTE, London,
UK, 21–36. http://doi.org/10.1002/9780470611227

5. A. Bannat, A. Bannat, F. Wallhoff, et al. 2008.
Towards optimal worker assistance: A framework for
adaptive selection and presentation of assembly
instructions. Proc. 1st Int. Workshop on Cognition for
Technical Systems, Cotesys.

6. Jeremy P. Birnholtz, Tovi Grossman, Clarissa Mak,
and Ravin Balakrishnan. 2007. An exploratory study of
input configuration and group process in a negotiation
task using a large display. Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI ’07, ACM Press, 91.
http://doi.org/10.1145/1240624.1240638

7. Bruno Campagnolo, Cesar A. Tacla, Emerson C.
Paraiso, Gilson Y. Sato, and Milton P. Ramos. 2009.
An architecture for supporting small collocated teams
in cooperative software development. 2009 13th
International Conference on Computer Supported
Cooperative Work in Design, IEEE, 264–269.
http://doi.org/10.1109/CSCWD.2009.4968069

8. John M. Carroll, Dennis C. Neale, Philip L. Isenhour,
Mary Beth Rosson, and D.Scott McCrickard. 2003.
Notification and awareness: Synchronizing task-
oriented collaborative activity. International Journal of
Human-Computer Studies 58, 5: 605–632.
http://doi.org/10.1016/S1071-5819(03)00024-7

9. Y.-L. Betty Chang, Stacey D. Scott, and Mark
Hancock. 2014. Supporting Situation Awareness in
Collaborative Tabletop Systems with Automation.
Proceedings of the Ninth ACM International
Conference on Interactive Tabletops and Surfaces - ITS
’14, ACM Press, 185–194.
http://doi.org/10.1145/2669485.2669496

10. Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, et
al. 2015. TurkDeck: Physical virtual reality based on
people. Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology -
UIST ’15, ACM Press, 417–426.
http://doi.org/10.1145/2807442.2807463

11. Andrew Clayphan, Judy Kay, and Armin Weinberger.
2014. ScriptStorm: Scripting to enhance tabletop
brainstorming. Personal and Ubiquitous Computing
18, 6: 1433–1453. http://doi.org/10.1007/s00779-013-
0746-z

12. Mira Dontcheva, Robert R. Morris, Joel R. Brandt, et
al. 2014. Combining crowdsourcing and learning to
improve engagement and performance. Proceedings of
the 32nd annual ACM conference on Human factors in
computing systems - CHI ’14, ACM Press, 3379–3388.
http://doi.org/10.1145/2556288.2557217

13. Markus Funk, Thomas Kosch, Scott W. Greenwald,
and Albrecht Schmidt. 2015. A benchmark for
interactive augmented reality instructions for assembly
tasks. Proceedings of the 14th International
Conference on Mobile and Ubiquitous Multimedia -
MUM ’15, ACM Press, 253–257.
http://doi.org/10.1145/2836041.2836067

14. Markus Funk, Thomas Kosch, and Albrecht Schmidt.
2016. Interactive worker assistance. Proceedings of the
2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing - UbiComp ’16,
ACM Press, 934–939.
http://doi.org/10.1145/2971648.2971706

15. B. P. Gerkey and Maja J. Matarić. 2004. A Formal
Analysis and Taxonomy of Task Allocation in Multi-
Robot Systems. The International Journal of Robotics
Research 23, 9: 939–954.
http://doi.org/10.1177/0278364904045564

16. D Greer and G Ruhe. 2004. Software release planning:
An evolutionary and iterative approach. Information
and Software Technology 46, 4: 243–253.
http://doi.org/10.1016/j.infsof.2003.07.002

17. Ankit Gupta, Dieter Fox, Brian Curless, and Michael
Cohen. 2012. DuploTrack: A realtime system for
authoring and guiding Duplo block assembly.
Proceedings of the 25th annual ACM symposium on
User interface software and technology - UIST ’12,
ACM Press, 389.
http://doi.org/10.1145/2380116.2380167

18. Steven J. Henderson and Steven K. Feiner. 2011.
Augmented reality in the psychomotor phase of a
procedural task. 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, IEEE,
191–200. http://doi.org/10.1109/ISMAR.2011.6092386

19. S.J. Hu, J. Ko, L. Weyand, et al. 2011. Assembly

system design and operations for product variety. CIRP
Annals - Manufacturing Technology 60, 2: 715–733.
http://doi.org/10.1016/j.cirp.2011.05.004

20. Petra Isenberg, Danyel Fisher, Meredith Ringel Morris,
Kori Inkpen, and Mary Czerwinski. 2010. An
Exploratory Study of Co-located Collaborative Visual
Analytics around a Tabletop Display. Proceedings of
Visual Analytics Science and Technology (VAST),
IEEE Computer Society.

21. Steven Johnson, Madeleine Gibson, and Bilge Mutlu.
2015. Handheld or handsfree?: Remote collaboration
via lightweight head-mounted displays and handheld
devices. Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social
Computing - CSCW ’15, ACM Press, 1825–1836.
http://doi.org/10.1145/2675133.2675176

22. Immanuel Kant. 1785. Groundwork of the metaphysics
of morals.

23. David Kirk, Tom Rodden, and Danaë Stanton Fraser.
2007. Turn it this way: Grounding collaborative action
with remote gestures. Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI ’07, ACM Press, 1039.
http://doi.org/10.1145/1240624.1240782

24. Jarrod Knibbe, Tovi Grossman, and George
Fitzmaurice. 2015. Smart Makerspace: An immersive
instructional space for physical tasks. Proceedings of
the 2015 International Conference on Interactive
Tabletops & Surfaces - ITS ’15, ACM Press, 83–92.
http://doi.org/10.1145/2817721.2817741

25. Robert E. Kraut, Mark D. Miller, and Jane Siegel.
1996. Collaboration in performance of physical tasks:
Effects on outcomes and communication. Proceedings
of the 1996 ACM conference on Computer supported
cooperative work - CSCW ’96, ACM Press, 57–66.
http://doi.org/10.1145/240080.240190

26. Benjamin Lafreniere, Tovi Grossman, Fraser
Anderson, et al. 2016. Crowdsourced Fabrication.
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology - UIST ’16, ACM
Press, 15–28. http://doi.org/10.1145/2984511.2984553

27. Faisal Luqman and Martin Griss. 2010. Overseer: A
mobile context-aware collaboration and task
management system for disaster response. 2010 Eighth
International Conference on Creating, Connecting and
Collaborating through Computing, IEEE, 76–82.
http://doi.org/10.1109/C5.2010.10

28. Karl Marx. 1844. Wages of Labour. In First
Manuscript, Economic and Philosophical Manuscripts.

29. G. Michalos, S. Makris, N. Papakostas, D. Mourtzis,
and G. Chryssolouris. 2010. Automotive assembly
technologies review: Challenges and outlook for a

flexible and adaptive approach. CIRP Journal of
Manufacturing Science and Technology 2, 2: 81–91.
http://doi.org/10.1016/j.cirpj.2009.12.001

30. Allen Newell and Paul S. Rosenbloom. 1981.
Mechanisms of skill acquisition and the law of
practice. In Cognitive skills and their acquisition, John
Robert Anderson (ed.). Lawrence Erlbaum Associates,
Inc., Hillsdale, NJ, 1–55.

31. Linet Özdamar and Gündüz Ulusoy. 1995. A survey on
the resource-constrained project scheduling problem.
IIE Transactions 27, 5: 574–586.
http://doi.org/10.1080/07408179508936773

32. David Pinelle and Carl Gutwin. 2008. Evaluating
teamwork support in tabletop groupware applications
using collaboration usability analysis. Personal and
Ubiquitous Computing 12, 3: 237–254.
http://doi.org/10.1007/s00779-007-0145-4

33. Abhishek Ranjan, Jeremy P. Birnholtz, and Ravin
Balakrishnan. 2007. Dynamic shared visual spaces:
Experimenting with automatic camera control in a
remote repair task. Proceedings of the SIGCHI
conference on Human factors in computing systems -
CHI ’07, ACM Press, 1177.
http://doi.org/10.1145/1240624.1240802

34. Eldon Schoop, Michelle Nguyen, Daniel Lim, Valkyrie
Savage, Sean Follmer, and Björn Hartmann. 2016.
Drill Sergeant: Supporting physical construction
projects through an ecosystem of augmented tools.
Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems -
CHI EA ’16, ACM Press, 1607–1614.
http://doi.org/10.1145/2851581.2892429

35. Onn Shehory and Sarit Kraus. 1998. Methods for task
allocation via agent coalition formation. Artificial
Intelligence 101, 1: 165–200.
http://doi.org/10.1016/S0004-3702(98)00045-9

36. Rajinder S. Sodhi, Brett R. Jones, David Forsyth, Brian
P. Bailey, and Giuliano Maciocci. 2013. BeThere: 3D
mobile collaboration with spatial input. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems - CHI ’13, ACM Press, 179.
http://doi.org/10.1145/2470654.2470679

37. Desney S. Tan, Darren Gergle, Regan Mandryk, et al.
2008. Using job-shop scheduling tasks for evaluating
collocated collaboration. Personal and Ubiquitous
Computing 12, 3: 255–267.
http://doi.org/10.1007/s00779-007-0154-3

38. Arthur Tang, Charles Owen, Frank Biocca, and
Weimin Mou. 2003. Comparative effectiveness of
augmented reality in object assembly. Proceedings of
the conference on Human factors in computing systems
- CHI ’03, ACM Press, 73.

http://doi.org/10.1145/642611.642626

39. C. Del Valle and E.F. Camacho. 1996. Automatic
assembly task assignment for a multirobot
environment. Control Engineering Practice 4, 7: 915–
921. http://doi.org/10.1016/0967-0661(96)00089-5

40. Carl A. Waldspurger and William E. Weihl. 1994.
Lottery scheduling: Flexible proportional-share
resource management. Proceedings of the 1st USENIX
conference on Operating Systems Design and
Implementation, USENIX Association, 1.

41. James R. Wallace, Stacey D. Scott, Eugene Lai, and
Deon Jajalla. 2011. Investigating the Role of a Large,
Shared Display in Multi-Display Environments.
Computer Supported Cooperative Work (CSCW) 20, 6:
529–561. http://doi.org/10.1007/s10606-011-9149-8

42. James R. Wallace, Stacey D. Scott, Taryn Stutz, Tricia
Enns, and Kori Inkpen. 2009. Investigating teamwork
and taskwork in single- and multi-display groupware
systems. Personal and Ubiquitous Computing 13, 8:
569–581. http://doi.org/10.1007/s00779-009-0241-8

43. Giles Westerfield, Antonija Mitrovic, and Mark
Billinghurst. 2013. Intelligent augmented reality
training for assembly tasks. . Springer Berlin
Heidelberg, 542–551. http://doi.org/10.1007/978-3-
642-39112-5_55

44. Gwen M. Wittenbaum, Sandra I. Vaughan, and Garold
Strasser. 2002. Coordination in Task-Performing

Groups. In Theory and Research on Small Groups, R.
Scott Tindale, Linda Heath, John Edwards, et al. (eds.).
Kluwer Academic Publishers, Boston, 177–204.
http://doi.org/10.1007/0-306-47144-2_9

45. Jens Ziegler, Sebastian Heinze, and Leon Urbas. 2015.
The potential of smartwatches to support mobile
industrial maintenance tasks. 2015 IEEE 20th
Conference on Emerging Technologies & Factory
Automation (ETFA), IEEE, 1–7.
http://doi.org/10.1109/ETFA.2015.7301479

46. LILLÅNGEN Wall cabinet. Retrieved from
http://www.ikea.com/ca/en/catalog/products/80240789/

47. LANDON Shelf. Retrieved from
https://www.jysk.ca/furniture/home-office-
furniture/bookcases/landon-narrow-shelf.html

48. ME16K3000AS Over the Range Microwave. Retrieved
from http://www.samsung.com/ca/consumer/home-
appliances/cooking-appliances/microwave-
ovens/ME16K3000AS/AC

49. Tower Bridge Set. Retrieved from
http://www.meccano.com/product/p10940/tower-
bridge-set

50. SEKTION High cabinet w/door & 4 drawers, white
Förvara, Häggeby white. Retrieved from
http://www.ikea.com/ca/en/catalog/products/S2904465
9/#/S89044680

APPENDIX
In this section we provide a detailed walkthrough for one iteration of our task distribution algorithm, using a simplified ex-
ample task. We show the values calculated at each step of the algorithm to illustrate how the next assigned section is chosen.
In this example, we assume that task diversity and group priority are both set to 0, as they were for our full study task. As-
sume we have two workers, X and Y. X is currently working on the Robot Body section, and Y has just finished the first Ro-
bot Shoulder section. The section assignment algorithm is triggered so that Y can be assigned a new section.

We calculate the lists U of available users and A of available sections:
U = {Y}
A = {Robot Body, Robot Shoulder (2), Robot Arm, Robot Arm (2)}

Note that Robot Body is included as an available section even though there is already a user working on it. This is because
the maximum number of people that can work on this section (Maxi) is set to 2, so a second user could potentially join.

Now, for user Y, we build a priority list for each criterion with priority values corresponding to each section in A:

Tree Depth: PD = {3, 3, 2, 2} since the first two sections (Robot Body and Robot Shoulder (2)) are at a depth of 3 in the tree,
and the next two (Robot Arm and Robot Arm (2)) are at a depth of two.

Group: PG = {0, 1, 1, 1} since individual work is being prioritized, and Robot Body is the only section already in progress.

Prior Experience: Assume user Y has an experience level of 3/5 with LEGO. Then PE = {3, 3, 3, 3}, since all sections re-
quire the LEGO skill. Since this list will be normalized later, prior experience in this case has no effect on the assignment.

Next Section: PN = {0, 0, 0, 0} since the parent section of Robot Shoulder (which Y just completed) is not included in A, as
it is still waiting on some other dependencies.

Repetition or diversity: Since we are prioritizing repetition in this example, we set each value PR[j] to Similarity(j, c) where
section Sc is the one Y just completed (Robot Shoulder). Therefore, PR = {0.5, 1, 0.5, 0.5} since the second section (Robot
Shoulder (2)) is an exact copy of Robot Shoulder, and all other sections require the same number of tools as Sc (no tools).

Speed: For this example, speed does not affect the section assignment. This is because the only completed section so far is
Robot Shoulder, and it has only been completed once by user Y. Therefore, the difference between the average time all users
have taken and the average time user Y has taken will be zero (since these times are the same). Therefore, PS = {0, 0, 0, 0}.

To calculate the overall priority value PYtotal, we normalize each list above and add the values together element-wise:

PYtotal = PD + PG + PE + PN + PR + PS
 = {0.3, 0.3, 0.2, 0.2} + {0, 0.3, 0.3, 0.3} + {0.25, 0.25, 0.25, 0.25} + {0, 0, 0, 0} + {0.2, 0.4, 0.2, 0.2} + {0, 0, 0, 0}
 = {0.75, 1.25, 0.95, 0.95}

The highest priority value in this list is the second one (1.25), so it corresponds with the second section in A: Robot Shoulder
(2). User Y is therefore assigned to Robot Shoulder (2) as the next section. This is a sensible choice given the parameters we
set, since we are prioritizing for repetition and this section is identical to the one user Y just completed. We can see that its
higher value came primarily from PR, but also from PD and PG, since it is at the largest depth possible in the tree, and it is not
already in progress and therefore will be completed individually.

