

Temporal Segmentation of Creative Live Streams

C. Ailie Fraser1, 2, Joy O. Kim1, Hijung Valentina Shin1, Joel Brandt1, Mira Dontcheva1

Adobe Research1; Design Lab, UC San Diego2

cafraser@ucsd.edu, {joykim, vshin, jobrandt, mirad}@adobe.com

Figure 1. We present a streamer-in-the-loop approach for creating a table of contents for creative live stream videos. We pair automatic segmentation
via command logs and audio transcripts with streamer labeling. We built a prototype interface to evaluate the approach with streamers, shown above.

ABSTRACT
Many artists broadcast their creative process through live
streaming platforms like Twitch and YouTube, and people
often watch archives of these broadcasts later for learning and
inspiration. Unfortunately, because live stream videos are of-
ten multiple hours long and hard to skim and browse, few can
leverage the wealth of knowledge hidden in these archives.
We present an approach for automatic temporal segmentation
of creative live stream videos. Using an audio transcript and
a log of software usage, the system segments the video into
sections that the artist can optionally label with meaningful
titles. We evaluate this approach by gathering feedback from
expert streamers and comparing automatic segmentations to
those made by viewers. We find that, while there is no one
“correct” way to segment a live stream, our automatic method
performs similarly to viewers, and streamers find it useful for
navigating their streams after making slight adjustments and
adding section titles.

Author Keywords
live streaming; creativity; video segmentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376437

CCS Concepts
•Information systems → Multimedia streaming;

INTRODUCTION
Creative live streams can be a valuable learning resource,
as they showcase not only the step-by-step process required
to accomplish a task, but also the mistakes, decisions, and
ideas that happen along the way [7]. Although watching a
stream while it is live brings a host of benefits (e.g., real-time
interaction with the streamer and other viewers), many can
only watch a stream when it is archived after the broadcast
is over. Unfortunately, most creative live stream videos are
very long (3-4 hours on average [7]) and by nature are not
edited in any way. As a result, navigating these videos to
catch up on a favorite artist, pick up some helpful tips, or
learn a technique is challenging [7, 15]. Unlike tutorial videos
which are often heavily produced and much shorter, live stream
videos include many sections that a viewer may want to skip,
such as conversation between the streamer and audience or
repetitive actions that are not interesting to watch.

How might we make archived live stream videos easier to
navigate? Prior work has shown that additional metadata, such
as transcripts, thumbnails, and usage logs, can provide helpful
ways for viewers to index into videos [9, 10, 11, 16, 19, 20, 22].
But for multi-hour live streams, organizing this information in
some meaningful way is critical. Some video authors manually
create a table of contents by adding labeled timestamps to their
video’s description, and some platforms (e.g., skillshare.com,
linkedin.com/learning) even require authors to divide their

https://skillshare.com
https://linkedin.com/learning
http://dx.doi.org/10.1145/3313831.3376437
mailto:permissions@acm.org
mailto:mirad}@adobe.com
mailto:cafraser@ucsd.edu
https://linkedin.com/learning
https://skillshare.com
http://dx.doi.org/10.1145/3313831.3376437
mailto:permissions@acm.org
mailto:mirad}@adobe.com
mailto:cafraser@ucsd.edu

videos into labeled sections. Despite the benefits of providing
structure, for artists that stream for multiple hours, multiple
times a week, going back through all of their content to create
a table of contents can be prohibitively time-consuming.

This paper proposes a semi-automatic method for creating a
table of contents for creative live stream videos. The proposed
approach automatically segments videos into sections and asks
the streamer to label each section with a meaningful title. To
segment each video, our approach leverages a transcript of
the streamer’s narration and a log of their activity, combining
them in a novel segmentation algorithm. This streamer-in-
the-loop approach was informed by formative interviews with
streamers and viewers, where we found that viewers want a
quicker way to browse live stream videos based on steps in
the creative process, and streamers are not willing to spend a
lot of time segmenting their own streams. We also found from
an online study that different viewers segment the same video
differently, which suggests that there is no single “right” way
to segment a creative live stream.

We demonstrate and evaluate our approach in the context of
live streaming with the popular creative software Adobe Pho-
toshop, which is used for a variety of creative tasks such as
painting, illustration, design, and photo manipulation. We col-
lected feedback on our approach from two artists who stream
on Behance (behance.net), a social network for creative pro-
fessionals. These streamers found the automatically-generated
table of contents useful but wanted to make changes.

A comparison of our segmentation algorithm with segmenta-
tions done by viewers found that for some streaming styles,
the algorithm generates sections as consistent as those made
by different viewers, while for others it is less effective. We
found that the algorithm is most consistent with viewers when
both transcript and application usage are available. Transcripts
are most useful when streamers describe their process while
they work, and usage logs are most useful for tasks that use a
variety of tools and commands.

To summarize, this paper makes the following contributions:

1. formative studies showing the potential benefits and chal-
lenges of segmenting creative live stream videos,

2. an algorithm for automatically segmenting creative live
stream videos into sections that leverages multiple data
streams when available,

3. feedback from streamers showing that our automatic seg-
mentation helped them segment their videos into meaning-
ful sections, and

4. an evaluation comparing this algorithm to segmentations by
viewers that sheds light on when the algorithm works well
and when it doesn’t.

We discuss how our approach can generalize beyond Photo-
shop to other creative software, or even non-software instruc-
tional videos. As online video corpora continue to grow, there
will be increased need for navigating videos at a higher level;
this paper demonstrates the complexity of this challenge and
proposes one method for making it possible.

RELATED WORK

Watching and Navigating Live Stream Videos
Live stream viewership has exploded in recent years, with ma-
jor streaming platforms logging billions of hours of viewership
each year [18]. Creative live streaming (i.e., live broadcasting
of an artist working on a creative project such as illustration
or crafting) is similarly growing in popularity. There are many
online platforms dedicated specifically to creative live stream-
ing (e.g., Behance (behance.net/live), Picarto (picarto.tv),
Pixiv Sketch (sketch.pixiv.net/lives)), and large platforms
such as Twitch (twitch.tv) routinely have thousands of con-
current viewers across their creative channels [7]. Creative
live streams can take on different forms depending on the
streamer’s goal; e.g., streamers aiming to teach are more likely
to talk about what they are doing, whereas other streamers may
not talk at all, or may focus on socializing with viewers [7]. In
general, live streamed videos differ from other types of videos
in that they are unedited and often less planned out; they can
include unexpected moments like mistakes, confusion, and
responses to real-time questions from viewers [5, 15].

A challenge with watching live streams, especially when one’s
goal is to learn from them, is the overwhelming amount of
information [7, 14, 15]. Prior work has proposed methods for
summarizing the content of knowledge-sharing streams [15]
and video game streams [13]. StreamWiki [15] enables view-
ers to collaboratively generate a summary in real-time that
helps others understand a stream’s content both during and
after. Helpstone [13] uses a log of game actions to show
context about the streamer’s gameplay and summarize what
has happened so far. This paper takes an approach similar to
Helpstone by using application usage to summarize a stream.

Video Navigation and Segmentation
Prior work has proposed methods for segmenting videos using
application usage logs [9] and audio transcripts [19, 20], but
not both together. This paper explores how these methods can
apply to live streamed content, and argues that using both data
sources together produces better results than either on its own.

Segmentation based on application usage
Application usage logs can reveal the type of task a user is
working on and when they switch to something new, based on
the tools, commands, and settings they use in their software.
Chronicle [9] separates application usage logs into sections
by save events, as users often save their work when they com-
plete a subtask. Chen et al. [3] found that creating new layers,
switching to different tools, and adjusting parameters can all
be indicators of switching tasks. We build on this work and
consider save events, layer selection, and the distribution of
commands over time. However, usage data only reveals part
of the story. Streamers often explain what they will do before
they do it, and depending on how application telemetry is in-
strumented, usage logs may not capture all activity. Therefore,
we rely not only on usage data, but audio transcripts as well.

Segmentation based on audio transcripts
Prior work has demonstrated how audio transcripts can be
used to segment and navigate lecture videos [10, 20] and
movies [19]. More broadly, segmenting a body of text by topic

https://behance.net
https://behance.net/live
https://picarto.tv
https://sketch.pixiv.net/lives
https://twitch.tv
https://twitch.tv
https://sketch.pixiv.net/lives
https://picarto.tv
https://behance.net/live
https://behance.net

is a longstanding problem in the natural language processing
community, and many different methods exist. Pavel et al. [20]
found that for lecture videos, Bayesian topic segmentation [4]
was most successful due to its incorporation of “cue phrases”;
i.e., common keywords or phrases that indicate transitions,
such as “now” or “next”. Early experimentation with applying
this method out-of-the-box to creative live stream transcripts
did not show promising results, likely because streamers often
rapidly switch between talking about their work and other
unrelated topics guided by the live chat, all while working
on the same task. In addition, any transcript-only method
misses activity that the streamer does not explicitly narrate,
and streamers often work in silence for long periods of time.
Inspired by Bayesian topic segmentation, our algorithm does
incorporate cue phrases, as we found that streamers often talk
about their process when they transition between subtasks.

FORMATIVE STUDIES
To understand what it would mean to segment creative live
stream recordings in a meaningful way and determine possible
use cases for segmented videos, we conducted interviews with
3 creative streamers and 7 creative live stream viewers, and
an online study comparing how different viewers segment
the same videos. We found that viewers want a quicker way
to browse live stream videos, but manually segmenting is a
difficult task for streamers, and different people segment the
same video in different ways.

Interviews With Streamers
The streamers (SP1-SP3) were recruited from a popular online
creative community (Behance), ranged from 24 to 36 years
old (all men), and reported streaming at least once a week.
Two participants were new to streaming, and one was a stream-
ing expert who in the past had streamed as his full time job.
The streamers’ domains of expertise included illustration, pho-
tography, and design. Each interview took place over video
conferencing and lasted 30 minutes.

Method
The streamers first participated in a semi-structured interview
where they were asked about their creative work, their expe-
rience streaming, their thoughts on live stream archives, and
how they interact with their viewers. Then they were shown
design mockups of a video player interface (see Figure 2b) and
asked about different strategies for segmenting their streams
and how a segmentation would affect their viewers’ experi-
ences. Our goal was to assess which metadata from the stream
the streamers would find most useful and want to show to their
audience. Last, they were asked to do a think-aloud activity
where they walked the interviewer through one of their recent
streams and described the parts of their creative process.

Results
The streamers mentioned several motivations for streaming
their creative work. One stemmed from a desire to grow a
relationship with their audience and build a community of
fans, corroborating previous research [7]. The streamers also
mentioned wanting to share parts of their process outside of
just the procedural steps; SP1 and SP2 both explained wanting
to share the why behind their artwork in addition to the how.

When asked about the idea of a table of contents for live stream
videos, streamers responded positively, expecting that it would
make their live streamed content easier for viewers to navigate.
However, streamers did not want to manually create sections,
as it would take too long and they were unsure whether the
time spent would be worth it:

“the amount of time I spend on creating a table of con-
tents would depend on whether I can monetize my time.”
—SP1

The streamers were interested in the idea of automatically
generating a table of contents. SP1 said that he would want
the ability to edit it in case it was not exactly what he wanted.
When asked what good sections for their videos might look
like, all three streamers expressed some uncertainty. SP1 said
that his more instructional-focused streams could likely be
broken up based on the steps they show, but some of his other
videos just involve him doing one type of task the whole time,
such as inking a drawing. SP3 said he tends to bounce around
a lot between different subtasks which could make higher-
level sections hard to identify. Even when we asked streamers
what the ideal sections for a particular stream of theirs might
be, answers were not obvious. This strongly suggests that
multiple segmentation schemes may be necessary depending
on an individual stream’s content and structure.

Interviews with Viewers
The viewers (VP1-VP7) were recruited from email distribution
lists at a large software company and through posts on Twitter,
and ranged from 21 to 41 years old. The viewers reported
watching creative streams at least once a week, mostly in
the domain of illustration. All interviews took place either
in-person or remotely via video conferencing, based on each
viewer’s preference. Each study session lasted approximately
60 minutes and participants were compensated with a $25
USD gift card for their time.

Method
The viewers also first participated in a semi-structured inter-
view; they were asked about their stream-watching behavior,
whether they ever watch live stream archives or clips, and
what they think makes live streams good or bad experiences.
Next, they participated in a think-aloud activity where they
were asked to walk the interviewer through a video of a stream
they had recently watched (if they didn’t have a link to a video
ready, they were provided with one chosen by the interviewer)
and describe an outline of the stream content. The interviewer
asked the viewer about the reasoning behind their outline and
observed the viewer as they interacted with the video record-
ing during this task. Last, viewers were shown mockups of
four different schemes we considered for segmenting a live
stream video (Figure 2): creative process, working/talking,
talking type, and info highlights. These schemes were loosely
inspired by the four creative streaming types noted in prior
work [7]. Viewers were asked about their impressions and
which schemes they preferred.

Results
We found that viewers used several signals to denote whether
a part of the video was of interest. For example, in the stream

Figure 2. a) Mockups showing four possible ways to segment a live
stream that were shown to formative study participants. (b) A detailed
mockup showing how a segmentation might appear below a video player.

walkthrough task, most viewers turned on audio right away.
When asked why, viewers said they were expecting explana-
tion or context about what is being done and wanted to use the
narration as a way to orient themselves in the video:

“Commentary ... sometimes really helps with backstory,
like, why they’re drawing this ... so I kind of wanted
to see if they were gonna talk about that, or any other
commentary I might need to know.” —VP4

Viewers also used video thumbnails and timeline scrubbing to
compare changes between video frames to find moments of
interest. This corroborated with how viewers described their
stream-watching behavior in general, where they often leave a
stream on in the background and look over to see if something
of interest is happening:

“I ... don’t tend to spend a lot of time watching the stream.
People spend a lot of time doing the same thing ... So I
tend to spend like 10 minutes or something getting some
technique ... that I can adopt.” —VP7

Surprisingly, most viewers stated they currently didn’t watch
archived streams, because they are too long and tedious to
navigate. Viewers did say they watch speedpaints (sped-up
recordings of creative processes) and art tutorials on platforms
like YouTube. Their reasons for watching these types of videos
over live stream archives were that high visual change is easier
to see, they are more efficient to learn from, and it is easy to
repeat portions of the video they want to watch more carefully:

“I feel like with speedpaints ... you see everything coming
together in a short amount of time so you can grasp what
is being done easier ... with [live streams], obviously
they’re drawing in like real time so it’s slower ... I’ll
click away and come back later ... I guess because I’m

impatient and I just want to see start to finish quicker and
I can apply it to my own drawing sooner as well.” —VP6

If live stream recordings were similarly easy to browse and
navigate, they could afford similar advantages for learning,
and thus would likely be watched more.

In the mockup task, viewers overwhelmingly preferred cre-
ative process and info highlights, explaining that they liked
having access to a high-level view of the process. For example,
VP7 stated that while watching streams, they often try to com-
pare their own process with the streamer’s in order to adopt
new techniques or drop current ones. Viewers also desired the
ability to skip directly to the parts of the process that were
interesting to them with respect to their current learning goals:

The [creative process mockup] is also nice because ... if
you want to see the whole process but then maybe you’re
like, you know, I already know sketching lineart, I want
to see the shading, I can just skip to the shading. —VP5

However, viewers also pointed out that not all streams show a
holistic process; a process may be broken into several separate
streams or there may even be gaps where some work was done
offline. In these cases, viewers favored highlights as unique
and specific signals of what small portions of the video may be
worth watching. This supports our findings from the streamers,
who also anticipated needing different segmentation schemes
for streams depending on their format. Viewers preferred the
talking mockups least, explaining that they would place less
emphasis on re-watching the streamer talk in a social manner
(at least in the context of creative streams) because they would
be missing the experience of participating live.

Collecting and Comparing Viewer Segmentations
Since our interviews suggested that segmenting a creative
live stream may not have a clear solution, we conducted an
online study where human coders segmented a sample set of
23 videos. We gathered segmentations from multiple coders
for each video to see how consistent different people are with
each other. The coders represent potential viewers of these
streams, since the goal of a segmentation is to aid viewers in
browsing and navigating videos.

Data Collection
For our dataset of creative live stream videos, we selected four
streamers on Behance that showcase different types of cre-
ative work commonly done in Photoshop: graphic design (S1),
comic art (S2), digital illustration (S3), and image composit-
ing (S4). For each streamer, we chose 5-7 of their publicly
available videos on Behance that lie between 30 minutes and
2 hours in length, and for which we had complete application
usage logs and transcripts. This produced a set of 23 videos.

We recruited 158 coders with self-reported intermediate to ex-
pert experience with Adobe Photoshop to segment each video
(an average of 6.9 coders segmented each video). Coders were
recruited from usertesting.com, an online worker platform.
Coders were given up to 20 minutes to generate a segmenta-
tion for one video in our input set; this time limit was enforced
to help ensure that coders would generate outlines at similar
levels of granularity. Instructions were open-ended; we asked

https://usertesting.com
https://usertesting.com

coders to segment videos into “meaningful sections”, allowing
them to segment in whatever way they thought fit. We removed
segmentations that had 3 or fewer segments, spanned less than
half the video, or had obviously spam/gibberish section names.

Analysis
To quantify how similar different coders’ segmentations were,
we calculated the boundary similarity [6] between each pair of
segmentations for each video. Boundary similarity computes
a score representing the similarity between two segmentations
based on boundary edit distance to differentiate between full
and near misses. Boundary similarity scores range between
0 and 1, where a score of 1 means the two segmentations are
exactly the same, and a score of 0 means they are completely
different. In contrast to window-based metrics (which are
calculated by comparing one manual segmentation to some
ground-truth segmentation) [21], boundary similarity is sym-
metric, allowing its use to compute pairwise similarity means
for more than two manual segmentations. This was suitable
for our case since we had more than two coders segment each
video and no ground-truth segmentation. We computed bound-
ary similarity scores using a boundary edit distance window of
120 seconds, which is the maximum distance that two bound-
aries may span to be considered a near miss (as opposed to a
full miss, which is penalized more strictly).

Results
Coders generated between 4 and 41 sections for each video,
with an average of 11 sections per video. Sections ranged
from 10 seconds to 1h40m long, with an average length of 6
minutes.

Table 1 shows a summary of the boundary similarity scores
for each streamer’s videos, which indicate how consistent
different coders were to each other. Overall, coders were not
very consistent; the average boundary similarity score across
all streamers was 0.255, and the highest boundary similarity
score was 0.679. This supports our interview findings that
segmenting creative live stream videos is not straightforward,
and there may be more than one “correct” way to do so.

Takeaways
Our formative studies confirmed the need for better ways to
consume archived creative live stream videos, and suggested
that segmenting live streams is not a straightforward task.
More specifically, we learned that streamers:

• see value in a table of contents but are not willing to spend
time making one manually, and

• have a hard time anticipating the best way to segment a
stream.

Streamer # scores Mean SD Median
S1 127 0.243 0.108 0.236
S2 136 0.268 0.139 0.240
S3 92 0.322 0.140 0.310
S4 132 0.208 0.110 0.186

Table 1. Summary of similarity scores for pairs of coder segmentations
(1 = identical, 0 = completely different). # scores refers to the number of
similarity scores (i.e., pairs of segmentations) for each streamer.

Meanwhile, viewers:

• see value in an overview of the creative process that allows
them to skip to relevant parts of the video,

• find speedpaints and how-to videos easier to navigate with
current interfaces, and

• segment the same video in different ways, suggesting there
is no one “right” way to segment creative live streams.

Together these findings point to the need for an approach
that requires little effort from streamers and offers viewers a
meaningful way to navigate. To satisfy both of these goals, we
decided to pursue a streamer-in-the-loop approach for creating
a table of contents: we designed an algorithm to automatically
segment videos into sections that the streamer can then label.

SEGMENTATION ALGORITHM
The goal of this algorithm is to obtain a temporal segmentation
of the entire stream, where each section contains a meaningful
step in the art process. We use a transcript of the streamer’s
audio and a log of their software usage to determine the opti-
mal boundaries for sections, combining both input sources in
a novel algorithm. We designed the algorithm in such a way
that it could be extended to include additional input sources,
such as visual data. We chose a heuristic approach over a
data-driven approach because our formative work showed that
there is no single “ground truth” way to segment a video.

Video Metadata

Transcripts
During live streams, streamers talk casually to the viewers
about various topics. Each streamer has a characteristic style.
For example, some streamers talk throughout the stream while
others talk sparingly; some streamers talk only about their
work while others also chat about unrelated topics as they
work. Regardless of their style, in instructional live streams,
streamers usually include some explanation of the major steps
or techniques they are using. These explanations are good
pointers to the main parts of the art process.

We obtain the transcript of the stream using a speech-to-text
engine [1] that splits the transcript into sentences and includes
the start and end time of each sentence.

Application usage logs
The log of a streamer’s soft-
ware usage contains a lot
of information about their
process [3, 9]. Some com-
mands indicate a transition
between different types of
tasks. Some groups of com-
mands are used together to
achieve a single task.

We obtain the streamer’s ap-
plication usage log through
an Adobe Photoshop plugin
that records user actions, which the streamer enables during
the live stream (Figure 3). Each event in the log comprises
the name of the command (e.g., select layer, mask), the

Figure 3. An example of the ap-
plication usage log obtained by
an Adobe Photoshop plugin.

timestamp for when the command was used in the stream,
and other command-specific details (e.g., the ID of the layer
that was selected). Similar data can also be obtained through
computer vision techniques [2] or accessibility methods [8].
We categorize commands as either navigational or editing.
Navigational commands do not alter the document but are
used to navigate and show different parts (e.g., zoom, hide
layer). Editing commands, on the other hand, modify the
document (e.g., brush, create layer).

Pre-processing
Identifying candidate section boundaries
First, we identify all candidate section boundaries, ti, by taking
the union of all the event timestamps in the usage log and the
beginning and end of each sentence in the transcript (Figure 4).
Since we do not want section boundaries to occur in the mid-
dle of a streamer’s sentence, we disregard any usage event that
occurs mid-sentence. We designate the interval between two
contiguous candidate boundaries ti and ti+1 as pi = [ti, ti+1).
Many streamers display a starting soon screen at the begin-
ning of their stream while they check their setup and wait for
viewers to join. Since this part of the stream does not include
any information, we do not consider it as part of any section.
Instead, we begin the first interval p0 at the start of the first
candidate boundary time t0.

Intro and Outro sections
We observed that, like tutorials [11], most live streams include
an intro at the beginning and an outro at the end. The intro is
the period before the streamer starts working, where they greet
viewers, introduce their project, and show any preparations
they have done. The outro consists of them summarizing what
they did, advertising their next stream, and saying goodbye.

To identify the intro and outro sections, we look for the first
and last editing commands. We exclude navigational com-
mands because streamers often use them to show their prepara-
tory work (e.g., reference images or preliminary sketches), or
to review parts of their final artwork. The intro starts at t0 and
ends at the first editing command. The outro starts after the
last editing command and lasts until the end of the stream. If
either section is shorter than 30 seconds, we do not split it into

Figure 4. Pre-processing step of our segmentation algorithm. First,
we identify candidate section boundaries by taking the union of the
sentence boundaries and command timestamps, and removing mid-
sentence boundaries. Then, we identify intro and outro sections by find-
ing the first and last editing commands.

a separate section, but instead include it as part of the first or
last main section. This is because extremely short sections are
unlikely to aid navigation.

Dynamic Programming Segmentation
The problem of segmenting a live stream video into mean-
ingful sections is analogous to the line-breaking problem, i.e.,
arranging the words of a paragraph into lines. In both cases,
we want to segment a sequence of discrete units (intervals
or words) into an optimal set of groups (sections or lines)
defined by some scoring function over candidate sections or
lines. We first explain the high-level structure of our algo-
rithm that is based on Knuth and Plass’ optimal line-breaking
algorithm [12], then we describe the scoring function in detail.

Algorithm overview
Given a sequence of n intervals P = {p0, ..., pn−1}, we find
the optimal set of boundaries that segment the intervals into
sections. Our algorithm processes the intervals in order, and
for each pi computes and records the optimal set of sections Si
formed by all intervals up to and including pi, along with the
total score E(Si) for this partial solution. To determine the op-
timal partial solution for interval pi = [ti, ti+1), the algorithm
considers each previous candidate boundary t j, where j ≤ i,
and evaluates two possible ways of creating a section that
includes intervals Pji = {p j, . . . , pi}: (1) Create a new section
Pji, or (2) merge Pji with the last section in S j−1. After consid-
ering both possibilities for all previous candidate boundaries
t j, we choose the segmentation with the highest total score,
E(Si). Once the algorithm iterates through all intervals, Sn−1
holds the optimal set of sections for the entire stream.

Scoring function
The algorithm described above requires a scoring function that
evaluates the quality of a section formed by merging a set of
contiguous intervals. The total score of a segmentation S is
defined as the average score of its constituent sections, s ∈ S:

E(S) =
1

∑ e(s)|S| s∈S

where |S| is the number of sections in S and each s is a set of
contiguous intervals {pk, ..., pk+m}.
The scoring function for a section s takes into account four fac-
tors: (1) the duration of the section, (2) transitional commands
in the application usage log, (3) coherence of the commands
used, and (4) transitional phrases in the transcript.

(1) Duration of a section: Very short or very long sections are
less helpful for navigation. We penalize extremely short (< 1
minute) or extremely long sections (> 10 minutes). We include
a linear dropoff from 1 to 0 for sections less than 1 minute
or greater than 10 minutes rather than having a strict cut-off
length because these length requirements are approximate
goals (a 59-second section should not be penalized signifi-
cantly more than a 60-second section). However, we do have
a strict cut-off for sections shorter than 30 seconds, because
we believe those are too short to be useful.

⎪
⎪
⎧
−∞ dur(s) ≤ 0.5⎪⎨2dur(s) − 0.5 0.5 < dur(s) < 1

elength(s) =
11 − dur(s) dur(s) > 10⎪⎩
1 otherwise

where dur(s) is the duration of section s in minutes.

(2) Transitional commands: Prior work [3, 9] found that cer-
tain types of application commands indicate that users are
transitioning between tasks. We build off Chronicle [9]’s ap-
proach, using save commands to indicate the end of subtasks;
and Chen et al. [3]’s approach, using layer selection com-
mands to indicate the start of subtasks. Like Chronicle, we pre-
fer saves that are followed by a longer gap until the next com-
mand. We similarly prefer layer selections with longer
time until the next layer selection, as this implies the user
worked on the first selected layer for longer.

For each save command, csave
i , we compute its importance

score I(ci) by considering the time gap between that com-save
mand and the next command, gap(ci). The longer the gap,save
the more important the save.

gap(ci)i saveI(c) = save max gap(csave)
csave∈stream

where the denominator is the maximum gap of all the save
commands in the stream, and is included for normalization.

We prioritize sections that have an important save command
near the end of the section. The save score is defined as:

t(clast_save(s)) − tstart(s)esave(s) = × I(clast_save(s))dur(s)

where clast_save(s) is the last save command in s and
t(clast_save(s)) is its timestamp. tstart(s) refers to the start time
of section s. If there are no save commands in s, esave(s) = 0.

Analogously, for a layer selection command ci
layer, we

compute its importance by considering the time gap between
that command and the next layer selection command for

ia different layer, gap(clayer). The longer this time, the more
important the layer selection.

i
i

gap(clayer)I(clayer) =
max gap(clayer)

clayer∈stream

To avoid rewarding extremely short sections, we only consider
ilayer selection events for which gap(clayer) ≥ 30 seconds.

We prioritize sections that have an important layer
selection command near the beginning of the section.

tend(s) − t(cfirst_layer(s))elayer(s) = × I(cfirst_layer(s))dur(s)

where cfirst_layer(s) is the first layer selection command
in s and t(cfirst_layer(s)) is its timestamp. tend(s) refers to the
end time of s. Again, if there are no layer selection com-
mands in s, elayer(s) = 0.

(3) Command coherence: Certain sets of commands are fre-
quently used together for a task [3], for example the color

and select brush commands for illustration (Figure 3). Sep-
arating such coherent sets of commands from other sets of
commands can help segment the stream into meaningful tasks.

To estimate how coherent different commands are, we count
the number of times a pair of commands appears adjacent to
each other in the application usage log. The coherence, M, of
a pair of commands ca and cb is defined as:

times ca occurs immediately before cbM(ca,cb)=
total # times ca occurs before any other command

where the denominator is used to normalize M to a range
between 0 and 1. The coherence of a command with itself
M(ca,ca) is defined as 1.

We favor boundaries that lie between less-coherent commands.
The command-coherence score for a section si is defined as:

ecommands(si) = 1 − M(clast(si−1), c f irst(si))

where clast(si−1) refers to the last command in the previous
section, si−1, and c f irst(si) refers to the first command in si.
If none of the last three intervals in si−1 have commands
and none of the first three intervals in si have commands,
ecommands(si) is defined as 1. If only one of those two con-
ditions hold, ecommands(si) is defined as 0. This prioritizes
boundaries between unrelated commands, or between a period
of no application use and a period of application use.

(4) Transcript semantics: Streamers often explain the impor-
tant steps in their art process. While the specific contents of
these explanations vary widely and are often punctuated with
other topics, key transitional phrases that indicate the start
or end of a task can provide cues for segmentation [4]. For
example, phrases such as “start” or “next” indicate the begin-
ning of a new step, while phrases such as “done” or “that’s all’
indicate an end.

To determine the start and end phrase scores estart and eend for
a candidate section s, we look for occurrences of (pre-defined)
start and end phrases in s. We favor sections with a start phrase
near the beginning and an end phrase near the end:

tend(s) − tstart_phrase(s)estart(s) =
dur(s)

tend_phrase(s) − tstart(s)eend(s) =
dur(s)

where tstart_phrase(s) is the time of the last start phrase in s, and
tend_phrase(s) is the time of the first end phrase in s. If there are
no start or end phrases in s, the corresponding score is 0.

Final Scoring Function: We define the final scoring function
for a section s as the weighted sum of the component scores:

e(s) = αlengthelength(s)
+ αsaveesave(s)+ αlayerelayer(s)
+ αcommandsecommands(s)
+ αstartestart(s)+ αendeend(s)

In our implementation, we use αlength = 5, αsaves = 5, αlayer =
3, αcommands = 1, αstart = 2, and αend = 2, which we find
through experimentation. However, as we explain in the Dis-
cussion, the optimal weights may depend on the type of stream
and the streamer’s individual style.

SEGMENTATION RESULTS
We ran our algorithm on the 23 videos for which we collected
viewer segmentations in the Formative Study. Table 4 in
the Appendix shows a detailed summary of its output. Our
algorithm generated between 6 and 26 sections for each video,
with an average of 12 sections per video. Sections ranged from
32 seconds to 13 minutes in length, with an average length
of 5.5 minutes. 22/23 videos produced an Intro section, and
18/23 videos produced an Outro section.

In the following sections, we report on feedback and section la-
bels we gathered from two of these streamers, and compare our
algorithm’s segmentation to viewer-generated segmentations.

FEEDBACK & LABELS FROM EXPERT STREAMERS
To investigate whether our segmentation algorithm is a good
fit for the needs of artists and assess how easy it would be for
them to add labels to the generated sections, we interviewed
the first 2 streamers from our set of videos, S1 and S2 (both
men). We showed them our segmentation in the context of a
prototype interface (Figure 1) for three of their own videos, and
asked them to label the sections and optionally change section
timings. Our prototype interface presents a collapsed table
of contents listing the sections with generic labels (Section 1,
Section 2, etc.) and thumbnails showing the first frame of each
section. A section can be expanded to show the application
usage, transcript, and chat messages from that part of the
video. The prototype was designed primarily to evaluate the
algorithm, rather than as a novel interface.

Method
We recruited the streamers from Behance where they stream.
Each interview lasted approximately 30-45 minutes and had
three parts. First, we discussed their background and why they
started live streaming their creative process. We then showed
them the prototype interface and asked for their feedback on
whether the automatically generated table of contents would
be useful to their viewers, and discussed the segmentation,
thumbnails, transcript, usage log, and chat. Last, we asked
them to go through one of their videos, label each automati-
cally generated section, and make any desired changes to the
timing of the sections. Following the interview, we sent them
two more of their own videos with automatically generated
tables of contents and asked them to do the same task on their
own. We compensated them $60 USD for their time.

Results
Both streamers found the automatic segmentation useful; they
felt it made it easier to navigate the long videos and helped to
organize all of the metadata associated with a long stream. Ad-
ditionally, the thumbnails gave some meaning to the sections
even in the absence of descriptive labels.

When asked what would make the table of contents more use-
ful, both streamers said they wanted to add labels and edit the

sections, confirming our streamer-in-the-loop approach. The
two artists approached this task quite differently, though they
both combined generated sections together resulting in fewer
total sections (see Figure 5 for an example of each). S1 was
happy with the generated sections but felt that they were too
granular at times. He combined some sections together with-
out changing any section timings. Our algorithm generated 13,
17, and 16 sections for his three videos, which he combined
into 8, 11, and 10 sections respectively. 20 (69%) of these
final sections were exactly the same as the generated sections.
In contrast, S2 gave new start times for many of his sections.
This took more effort, as he had to find exact times, but often
his new start times differed only slightly from the algorithm’s.
Our algorithm generated 16, 9, and 21 sections for his three
videos; he created 6, 5, and 6 sections respectively. 3 (18%)
of these final sections were exactly the same as the generated
sections, and another 5 (29%) were within 15 seconds of the
generated sections. Upon closer inspection, we found that this
slight misalignment was most often due to putting a boundary
between two sentences on the same topic. Other times the
misalignment was not really an error; both start times were
equally good. Please see the Supplemental Materials for a
detailed comparison.

We believe the difference in segmentation quality between the
two streamers is due to three factors: type of stream, type of
art, and transcript errors. One key difference between the two
streamers is the type of stream they make. S2 typically streams
making streams where he draws his online comics, while S1
makes learning streams where he teaches the audience how
to do design [7]. We found that in learning streams, the tran-
script contains many more useful cues for segmentation than
in making streams, because the streamer talks more about
what they are doing. Another key difference between the two
streamers is the type of artwork they show. S1 showed poster
design work that follows a relatively linear process, with each
step involving different commands. S2 showed comic illustra-
tion, which involved many of the same commands throughout
the process. Last, S2 played lyrical music in the background
which caused errors in the transcription, resulting in erroneous
boundaries. In the end, the combination of lack of process
narration, the similarity in commands, and the transcription
errors came together to create a lower-quality segmentation
for S2’s streams. As a result he had to do more work to make
a table of contents he was happy with. However, even in cases
where the streamers did not agree with the output completely,
they both found it helpful for creating their own sections. It
was easier than segmenting from scratch as it gave them a
starting point.

Figure 5. A comparison of our algorithm’s segmentations to the stream-
ers’ final segmentations for the first video each streamer was given.

COMPARISON TO VIEWER SEGMENTATIONS
To evaluate our segmentation algorithm, we compared its re-
sults to the viewer segmentations collected in the Formative
Study. Since we found that different people segment differ-
ently, our goal was to assess if our algorithm is at least as
consistent with humans as they are with each other. If our
algorithm can produce results at least as consistent as those
made by potential viewers, this suggests it is reasonable.

Method
In addition to our algorithm’s segmentations, we generated
several alternate segmentations for each video to see whether
the algorithm would perform better than simpler alternatives.
These include versions of the algorithm that use application
usage data only (commandsOnly) and transcript data only
(transcriptOnly), a random segmentation (random), and a uni-
form segmentation (uniform) based on the average duration of
sections made by coders (6 minutes).

To quantify how consistent our algorithm is with coder seg-
mentations, we use the boundary similarity metric [6] as in
the Formative Study. For each video, we first compute pair-
wise similarity scores between the algorithm’s segmentation
and each coder’s segmentation. The average of these scores
gives a measure of how consistent our algorithm is with coders
for segmentation of a single video (algorithm-coder similar-
ity). To determine whether the algorithm is as consistent with
coders as they are with each other, we use a paired t-test com-
paring the average algorithm-coder similarity scores to the

average coder-coder similarity scores across all videos for
each streamer. Similarly, we compare algorithm-coder sim-
ilarity with the other alternate segmentations’ similarities to
coders (random-coder, uniform-coder, commandsOnly-coder,
transcript-Only-coder).

Results
Results varied across streamers, but in most cases, the algo-
rithm was reasonably consistent with coders and better than
random or uniform segmentations.

Algorithm is similar to coders for 3 out of 4 streamers.
Table 2 shows the paired t-test results comparing algorithm-
coder similarity to coder-coder similarity. For S1, S3, and S4,
the algorithm-coder similarity scores were not distinguishable
from coder-coder similarity scores, meaning that the algo-
rithm was roughly as consistent with coders as coders were
with each other. However, for S2, the algorithm-coder group
was significantly less similar, suggesting that the algorithm
performed worse than coders.

Algorithm is more consistent than other automated meth-
ods for some streamers. Table 3 shows the paired t-test re-
sults comparing algorithm-coder similarity to the other al-
ternate segmentations. In most cases, our algorithm’s seg-
mentation aligned more closely with coders than random or
uniform segmentations. For S1, the algorithm also aligned
more closely with coders than either of the commandsOnly or
transcriptOnly alternatives, and for S2, the algorithm aligned

Streamer n
algorithm-coder
mean similarity

algorithm-coder
median similarity

coder-coder
mean similarity

coder-coder
median similarity t p 95% CI

S1 7 0.259 0.248 0.243 0.236 0.202 0.85 [-0.03, 0.04]
S2 5 0.191 0.193 0.268 0.240 -4.563 0.01 [-0.13, -0.03]
S3 6 0.292 0.255 0.322 0.310 -0.796 0.46 [-0.12, 0.06]
S4 5 0.203 0.202 0.208 0.186 -0.256 0.81 [-0.04, 0.03]

Table 2. Results of paired t-tests comparing the similarity of the algorithm with coders to the similarity of coders with each other, for each streamer. n
refers to the number of videos for that streamer (i.e., the number of average boundary similarity scores in each group). For S1, S3, and S4, the difference
between the two groups is not significant. For S2, the algorithm-coder group is significantly less similar than the coder-coder group.

Streamer n Comparison group Mean similarity Median similarity t p 95% CI
S1 7 random-coder 0.129 0.121 4.413 0.01 [0.06, 0.21]

uniform-coder 0.165 0.168 3.453 0.01 [0.03, 0.17]
commandsOnly-coder 0.196 0.196 2.996 0.02 [0.01, 0.13]
transcriptOnly-coder 0.201 0.173 2.602 0.04 [0, 0.11]

S2 5 random-coder 0.081 0.082 4.282 0.01 [0.04, 0.18]
uniform-coder 0.112 0.108 2.386 0.08 [-0.01, 0.16]
commandsOnly-coder 0.161 0.184 1.461 0.22 [-0.03, 0.10]
transcriptOnly-coder 0.143 0.138 2.913 0.04 [0, 0.09]

S3 6 random-coder 0.142 0.129 4.160 0.01 [0.06, 0.25]
uniform-coder 0.179 0.162 2.851 0.04 [0.01, 0.22]
commandsOnly-coder 0.242 0.223 1.846 0.12 [-0.02, 0.12]
transcriptOnly-coder 0.204 0.184 2.129 0.09 [-0.02, 0.21]

S4 5 random-coder 0.143 0.135 2.700 0.05 [0, 0.12]
uniform-coder 0.184 0.184 1.485 0.21 [-0.02, 0.06]
commandsOnly-coder 0.194 0.190 0.240 0.82 [-0.04, 0.05]
transcriptOnly-coder 0.193 0.179 1.059 0.35 [-0.02, 0.04]

Table 3. Results of paired t-tests comparing algorithm-coder similarity to the similarity of four alternate algorithms with coders, for each streamer. In
all bolded rows (p < 0.05), the positive t scores indicate that the algorithm-coder group had higher similarity than the comparison group.

more closely with coders than transcriptOnly. For S3, the al-
gorithm was marginally more similar to coders than those two
alternatives, and for S4 there were no significant differences.

Discussion: Differences Between Streamer Styles
The performance of our algorithm varied across the four
streamers, suggesting that it may work better for certain
streaming styles over others. Based on our observations of
the videos in this set, S1 and S3 tend to follow a more linear
step-by-step process than S2 and S4, in terms of both the com-
mands they use and the amount of instructional narration they
do. This may be why the algorithm performs better on those
streamers’ videos. The result that the algorithm was signif-
icantly less consistent with coders for S2 corroborates S2’s
desire to more drastically change their automatically-generated
segmentations.

For S1, the algorithm performed significantly better than ei-
ther commandsOnly or transcriptOnly, and for S3, marginally
better, indicating that both data streams are important, but the
relative utility of each may depend on the streamer. It may be
the case that different streamers benefit from different weights
for the algorithm’s scoring function components.

DISCUSSION & FUTURE WORK
The algorithm proposed in this paper performs better on some
streams than on others, highlighting the complexity of live
stream segmentation. We found that there is no one single
solution, but we believe that leveraging additional metadata
about the video could improve segmentation. Our approach
is generalizable to incorporating other input sources, such as
chat logs, audio, and visual data. For example, logs from the
live chat could be used to find moments of high interest [17] or
topic changes, audio analysis could help address transcription
errors where background music is transcribed as speech, and
computer vision could be used to adjust boundaries where
a command is not aligned with visual change. In situations
where the application usage is missing or not very discrimina-
tory (as in S2’s case), the spatial location of edits could also
be useful [3]. Last, one could also ask the streamer or viewers
to mark section boundaries during the live broadcast [15].

Finding Highlights
The goal of our algorithm was to create a table of contents, but
we found that many streamers and viewers are also interested
in highlights. Twitch allows streamers and viewers to manu-
ally create highlight clips from streams. Future work should
explore how to automatically generate useful highlights. As
one example, a viewer may wish to see all moments where the
streamer answered a question from the chat. We have begun
to develop a method for locating these moments using the
transcript and chat log of a video. We find all chat messages
with a question mark and search subsequent transcript sen-
tences for an approximate match. Since streamers often read
questions out loud before responding to them, finding a match
helps to find the moment right before the streamer answered
the question. An approach like this could be extended to find
all moments of streamer-viewer interaction (not just question-
answering) and allow viewers to watch only these moments or
to skip them and focus on the instructional content.

Evaluating Algorithm Success
As is often the case with creative open-ended tasks, applying
automated methods to understand them is difficult. As we
found in both our formative work and our evaluations, it is
not obvious how best to segment a live stream, and different
people can produce very different segmentations. Notably, the
streamers we interviewed generated much longer sections on
average (10.5 minutes) than our algorithm (5.5 minutes) or
the coders (6 minutes). This suggests that a streamer’s desired
segmentation may not always align with what viewers want.

The fact that our algorithm was at least as consistent with
coders as they were with each other is promising, but whether
and how its segmentations help viewers more easily navigate,
understand, and learn from videos remains to be seen. We also
hypothesize based on our feedback from streamers that having
any segmentation for a video is better than no segmentation
at all, as it gives viewers more ways to skim the contents
of a video compared to a traditional interface. Future work
should evaluate this hypothesis and explore the design space
of interfaces for presenting a table of contents, and how they
compare to traditional video-viewing interfaces.

Generalizability of Approach
Our current approach and evaluation focused on live streamed
videos in Adobe Photoshop, but we believe it can extend to any
creative software screencast videos. Most software include
a save command, and other general transitional commands
could be added such as opening/closing a document. Layer
selection is also not specific to Photoshop; many graphic de-
sign and digital art applications also include layers as a main
organizational tool. Our approach for transcript analysis may
even generalize more broadly to any demonstrational video
(e.g., physical DIY tutorials or cooking videos). Future work
should explore how our approach applies to these broader do-
mains, as it may have implications for general live streaming
platforms, not just those focused on creative work.

CONCLUSION
This paper presented a streamer-in-the-loop approach for tem-
poral segmentation of creative live stream videos. We de-
veloped an algorithm that uses audio transcripts and applica-
tion usage logs to automatically segment videos into sections
based on steps of the creative process. The streamer can then
add their own labels to each section to help viewers navigate.
Through feedback from two streamers and a comparison of
our algorithm’s output with segmentations made by viewers on
23 videos, we found that our approach works well for videos
where the streamers consistently talk about their process and
use a variety of application commands. More generally, we
find that the task of segmenting creative live streams into sec-
tions is not straightforward and has many possible solutions.
We argue that our approach provides one reasonable solution,
bringing viewers one step closer to the wealth of knowledge
that lays hidden inside live stream videos.

ACKNOWLEDGEMENTS
We thank Sarah Rapp, Dave Stein, and Zach McCullough for
their input and feedback throughout this project, and Nancy
Reid for her help with statistical analyses.

REFERENCES
[1] 2019. Speech to Text API. (2019).

https://azure.microsoft.com/en-us/services/
cognitive-services/speech-to-text/

[2] Nikola Banovic, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2012. Waken: Reverse engineering
usage information and interface structure from software
videos. In Proceedings of the 25th annual ACM
symposium on User interface software and technology -
UIST ’12. ACM Press, New York, New York, USA, 83.
DOI:http://dx.doi.org/10.1145/2380116.2380129

[3] Hsiang-Ting Chen, Li-Yi Wei, Björn Hartmann, and
Maneesh Agrawala. 2016. Data-driven adaptive history
for image editing. In Proceedings of the 20th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games - I3D ’16. ACM Press, New York, New York,
USA, 103–111. DOI:
http://dx.doi.org/10.1145/2856400.2856417

[4] Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
Unsupervised Topic Segmentation. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP ’08). Association for
Computational Linguistics, Stroudsburg, PA, USA,
334–343.
http://dl.acm.org/citation.cfm?id=1613715.1613760

[5] Travis Faas, Lynn Dombrowski, Alyson Young, and
Andrew D. Miller. 2018. Watch Me Code: Programming
Mentorship Communities on Twitch.tv. Proceedings of
the ACM on Human-Computer Interaction 2, CSCW
(nov 2018), 1–18. DOI:
http://dx.doi.org/10.1145/3274319

[6] Chris Fournier. 2013. Evaluating Text Segmentation
using Boundary Edit Distance. In Proceedings of 51st
Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics,
Sofia, Bulgaria, 1702–1712.

[7] C. Ailie Fraser, Joy O. Kim, Alison Thornsberry, Scott
Klemmer, and Mira Dontcheva. 2019a. Sharing the
Studio: How Creative Livestreaming can Inspire,
Educate, and Engage. In Proceedings of the 2019 on
Creativity and Cognition - C&C ’19. ACM Press, New
York, New York, USA, 144–155. DOI:
http://dx.doi.org/10.1145/3325480.3325485

[8] C. Ailie Fraser, Tricia J. Ngoon, Mira Dontcheva, and
Scott Klemmer. 2019b. RePlay: Contextually Presenting
Learning Videos Across Software Applications. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems - CHI ’19. ACM Press,
New York, New York, USA, 1–13. DOI:
http://dx.doi.org/10.1145/3290605.3300527

[9] Tovi Grossman, Justin Matejka, and George Fitzmaurice.
2010. Chronicle: Capture, exploration, and playback of
document workflow histories. In Proceedings of the
23nd annual ACM symposium on User interface
software and technology - UIST ’10. ACM Press, New
York, New York, USA, 143. DOI:
http://dx.doi.org/10.1145/1866029.1866054

[10] Juho Kim, Philip J. Guo, Carrie J. Cai,
Shang-Wen (Daniel) Li, Krzysztof Z. Gajos, and
Robert C. Miller. 2014a. Data-driven interaction
techniques for improving navigation of educational
videos. In Proceedings of the 27th annual ACM
symposium on User interface software and technology -
UIST ’14. ACM Press, New York, New York, USA,
563–572. DOI:
http://dx.doi.org/10.1145/2642918.2647389

[11] Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J. Guo,
Robert C. Miller, and Krzysztof Z. Gajos. 2014b.
Crowdsourcing step-by-step information extraction to
enhance existing how-to videos. In Proceedings of the
32nd annual ACM conference on Human factors in
computing systems - CHI ’14. ACM Press, New York,
New York, USA, 4017–4026. DOI:
http://dx.doi.org/10.1145/2556288.2556986

[12] Donald E. Knuth and Michael F. Plass. 1981. Breaking
paragraphs into lines. Software: Practice and
Experience 11, 11 (nov 1981), 1119–1184. DOI:
http://dx.doi.org/10.1002/spe.4380111102

[13] Pascal Lessel, Alexander Vielhauer, and Antonio Krüger.
2017. Expanding Video Game Live-Streams with
Enhanced Communication Channels: A Case Study. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems - CHI ’17. ACM Press,
New York, New York, USA, 1571–1576. DOI:
http://dx.doi.org/10.1145/3025453.3025708

[14] Zhicong Lu, Michelle Annett, Mingming Fan, and
Daniel Wigdor. 2019. "I feel it is my responsibility to
stream": Streaming and Engaging with Intangible
Cultural Heritage through Livestreaming. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems - CHI ’19. ACM Press,
New York, New York, USA, 1–14. DOI:
http://dx.doi.org/10.1145/3290605.3300459

[15] Zhicong Lu, Seongkook Heo, and Daniel J. Wigdor.
2018. StreamWiki: Enabling Viewers of Knowledge
Sharing Live Streams to Collaboratively Generate
Archival Documentation for Effective In-Stream and
Post Hoc Learning. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW (nov 2018),
1–26. DOI:http://dx.doi.org/10.1145/3274381

[16] Justin Matejka, Tovi Grossman, and George Fitzmaurice.
2011. Ambient help. In Proceedings of the 2011 annual
conference on Human factors in computing systems -
CHI ’11. ACM Press, New York, New York, USA, 2751.
DOI:http://dx.doi.org/10.1145/1978942.1979349

[17] Rui Pan, Lyn Bartram, and Carman Neustaedter. 2016.
TwitchViz: A Visualization Tool for Twitch Chatrooms.
In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems -
CHI EA ’16. ACM Press, New York, New York, USA,
1959–1965. DOI:
http://dx.doi.org/10.1145/2851581.2892427

https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
http://dx.doi.org/10.1145/2380116.2380129
http://dx.doi.org/10.1145/2856400.2856417
http://dl.acm.org/citation.cfm?id=1613715.1613760
http://dx.doi.org/10.1145/3274319
http://dx.doi.org/10.1145/3325480.3325485
http://dx.doi.org/10.1145/3290605.3300527
http://dx.doi.org/10.1145/1866029.1866054
http://dx.doi.org/10.1145/2642918.2647389
http://dx.doi.org/10.1145/2556288.2556986
http://dx.doi.org/10.1002/spe.4380111102
http://dx.doi.org/10.1145/3025453.3025708
http://dx.doi.org/10.1145/3290605.3300459
http://dx.doi.org/10.1145/3274381
http://dx.doi.org/10.1145/1978942.1979349
http://dx.doi.org/10.1145/2851581.2892427
https://Twitch.tv

[18] Jurre Pannekeet. 2018. Five Key Insights into Twitch
and YouTube Gaming and the 2.4Bn Viewing Hours
They Generated in Q1 2018. (apr 2018).
https://newzoo.com/insights/articles/
five-key-insights-into-twitch-and-youtube-gaming/

[19] Amy Pavel, Dan B. Goldman, Björn Hartmann, and
Maneesh Agrawala. 2015. SceneSkim: Searching and
Browsing Movies Using Synchronized Captions, Scripts
and Plot Summaries. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software &
Technology - UIST ’15. ACM Press, New York, New
York, USA, 181–190. DOI:
http://dx.doi.org/10.1145/2807442.2807502

[20] Amy Pavel, Colorado Reed, Björn Hartmann, and
Maneesh Agrawala. 2014. Video digests: a browsable,
skimmable format for informational lecture videos. In

Proceedings of the 27th annual ACM symposium on
User interface software and technology - UIST ’14.
ACM Press, New York, New York, USA, 573–582. DOI:
http://dx.doi.org/10.1145/2642918.2647400

[21] Lev Pevzner and Marti A Hearst. 2002. A Critique and
Improvement of an Evaluation Metric for Text
Segmentation. Comput. Linguist. 28, 1 (mar 2002),
19–36. DOI:
http://dx.doi.org/10.1162/089120102317341756

[22] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-Play: Automatically Linking
Screencast Video Tutorials with Applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11.
ACM Press, New York, New York, USA, 135. DOI:
http://dx.doi.org/10.1145/2047196.2047213

APPENDIX

Streamer Type of Work Duration # Sections Shortest Section Longest Section Avg Section Length Intro? Outro?
S1 Graphic Design 1:45:01 17 1:28 9:52 6:10 3 7

0:52:25 13 0:48 9:55 4:00 3 3
0:59:21 11 0:59 9:55 5:20 3 3
0:56:42 11 0:54 9:57 5:09 3 3
1:02:28 13 1:14 9:56 4:48 3 3
1:11:43 11 1:03 9:59 6:31 3 7
1:01:31 11 2:17 10:00 5:33 3 7

S2 Comic Art 2:05:10 21 1:21 9:51 5:48 3 3
0:58:06 7 1:19 10:00 8:11 3 7
0:55:51 9 1:11 9:55 5:54 3 3
1:20:24 10 1:19 13:15 7:41 3 3
1:47:60 16 1:30 9:59 6:43 3 3

S3 Digital Illustration 0:48:36 7 0:37 9:57 6:32 3 3
0:29:54 6 0:38 9:04 4:47 3 3
0:28:22 6 1:56 9:42 4:27 3 3
0:36:36 9 1:19 7:28 3:49 3 3
0:33:04 6 0:37 9:40 5:05 3 3
0:50:39 13 1:45 8:09 3:37 7 3

S4 Image Compositing 2:04:38 26 0:44 9:50 4:48 3 3
1:14:08 12 1:00 10:01 6:11 3 3
0:31:55 8 0:32 10:00 3:59 3 3
1:22:23 18 1:47 8:10 4:34 3 3
1:03:05 11 2:08 9:57 5:44 3 7

Table 4. Summary of our segmentation algorithm’s output on a sample set of 23 videos from 4 streamers. Duration is in H:MM:SS format, and section
lengths are in MM:SS format. Intro and Outro specify whether the algorithm generated an Intro and Outro section, respectively.

https://newzoo.com/insights/articles/five-key-insights-into-twitch-and-youtube-gaming/
https://newzoo.com/insights/articles/five-key-insights-into-twitch-and-youtube-gaming/
http://dx.doi.org/10.1145/2807442.2807502
http://dx.doi.org/10.1145/2642918.2647400
http://dx.doi.org/10.1162/089120102317341756
http://dx.doi.org/10.1145/2047196.2047213

	Introduction
	Related Work
	Watching and Navigating Live Stream Videos
	Video Navigation and Segmentation
	Segmentation based on application usage
	Segmentation based on audio transcripts

	Formative Studies
	Interviews With Streamers
	Method
	Results

	Interviews with Viewers
	Method
	Results

	Collecting and Comparing Viewer Segmentations
	Data Collection
	Analysis
	Results

	Takeaways

	Segmentation Algorithm
	Video Metadata
	Transcripts
	Application usage logs

	Pre-processing
	Identifying candidate section boundaries
	Intro and Outro sections

	Dynamic Programming Segmentation
	Algorithm overview
	Scoring function

	Segmentation Results
	Feedback & Labels from expert streamers
	Method
	Results

	Comparison to viewer segmentations
	Method
	Results
	Discussion: Differences Between Streamer Styles

	Discussion & Future Work
	Finding Highlights
	Evaluating Algorithm Success
	Generalizability of Approach

	Conclusion
	Acknowledgements
	References
	Appendix

