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Figure 1. We present a streamer-in-the-loop approach for creating a table of contents for creative live stream videos. We pair automatic segmentation 
via command logs and audio transcripts with streamer labeling. We built a prototype interface to evaluate the approach with streamers, shown above. 

ABSTRACT 
Many artists broadcast their creative process through live 
streaming platforms like Twitch and YouTube, and people 
often watch archives of these broadcasts later for learning and 
inspiration. Unfortunately, because live stream videos are of-
ten multiple hours long and hard to skim and browse, few can 
leverage the wealth of knowledge hidden in these archives. 
We present an approach for automatic temporal segmentation 
of creative live stream videos. Using an audio transcript and 
a log of software usage, the system segments the video into 
sections that the artist can optionally label with meaningful 
titles. We evaluate this approach by gathering feedback from 
expert streamers and comparing automatic segmentations to 
those made by viewers. We find that, while there is no one 
“correct” way to segment a live stream, our automatic method 
performs similarly to viewers, and streamers find it useful for 
navigating their streams after making slight adjustments and 
adding section titles. 
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INTRODUCTION 
Creative live streams can be a valuable learning resource, 
as they showcase not only the step-by-step process required 
to accomplish a task, but also the mistakes, decisions, and 
ideas that happen along the way [7]. Although watching a 
stream while it is live brings a host of benefits (e.g., real-time 
interaction with the streamer and other viewers), many can 
only watch a stream when it is archived after the broadcast 
is over. Unfortunately, most creative live stream videos are 
very long (3-4 hours on average [7]) and by nature are not 
edited in any way. As a result, navigating these videos to 
catch up on a favorite artist, pick up some helpful tips, or 
learn a technique is challenging [7, 15]. Unlike tutorial videos 
which are often heavily produced and much shorter, live stream 
videos include many sections that a viewer may want to skip, 
such as conversation between the streamer and audience or 
repetitive actions that are not interesting to watch. 

How might we make archived live stream videos easier to 
navigate? Prior work has shown that additional metadata, such 
as transcripts, thumbnails, and usage logs, can provide helpful 
ways for viewers to index into videos [9, 10, 11, 16, 19, 20, 22]. 
But for multi-hour live streams, organizing this information in 
some meaningful way is critical. Some video authors manually 
create a table of contents by adding labeled timestamps to their 
video’s description, and some platforms (e.g., skillshare.com, 
linkedin.com/learning) even require authors to divide their 
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videos into labeled sections. Despite the benefits of providing 
structure, for artists that stream for multiple hours, multiple 
times a week, going back through all of their content to create 
a table of contents can be prohibitively time-consuming. 

This paper proposes a semi-automatic method for creating a 
table of contents for creative live stream videos. The proposed 
approach automatically segments videos into sections and asks 
the streamer to label each section with a meaningful title. To 
segment each video, our approach leverages a transcript of 
the streamer’s narration and a log of their activity, combining 
them in a novel segmentation algorithm. This streamer-in-
the-loop approach was informed by formative interviews with 
streamers and viewers, where we found that viewers want a 
quicker way to browse live stream videos based on steps in 
the creative process, and streamers are not willing to spend a 
lot of time segmenting their own streams. We also found from 
an online study that different viewers segment the same video 
differently, which suggests that there is no single “right” way 
to segment a creative live stream. 

We demonstrate and evaluate our approach in the context of 
live streaming with the popular creative software Adobe Pho-
toshop, which is used for a variety of creative tasks such as 
painting, illustration, design, and photo manipulation. We col-
lected feedback on our approach from two artists who stream 
on Behance (behance.net), a social network for creative pro-
fessionals. These streamers found the automatically-generated 
table of contents useful but wanted to make changes. 

A comparison of our segmentation algorithm with segmenta-
tions done by viewers found that for some streaming styles, 
the algorithm generates sections as consistent as those made 
by different viewers, while for others it is less effective. We 
found that the algorithm is most consistent with viewers when 
both transcript and application usage are available. Transcripts 
are most useful when streamers describe their process while 
they work, and usage logs are most useful for tasks that use a 
variety of tools and commands. 

To summarize, this paper makes the following contributions: 

1. formative studies showing the potential benefits and chal-
lenges of segmenting creative live stream videos, 

2. an algorithm for automatically segmenting creative live 
stream videos into sections that leverages multiple data 
streams when available, 

3. feedback from streamers showing that our automatic seg-
mentation helped them segment their videos into meaning-
ful sections, and 

4. an evaluation comparing this algorithm to segmentations by 
viewers that sheds light on when the algorithm works well 
and when it doesn’t. 

We discuss how our approach can generalize beyond Photo-
shop to other creative software, or even non-software instruc-
tional videos. As online video corpora continue to grow, there 
will be increased need for navigating videos at a higher level; 
this paper demonstrates the complexity of this challenge and 
proposes one method for making it possible. 

RELATED WORK 

Watching and Navigating Live Stream Videos 
Live stream viewership has exploded in recent years, with ma-
jor streaming platforms logging billions of hours of viewership 
each year [18]. Creative live streaming (i.e., live broadcasting 
of an artist working on a creative project such as illustration 
or crafting) is similarly growing in popularity. There are many 
online platforms dedicated specifically to creative live stream-
ing (e.g., Behance (behance.net/live), Picarto (picarto.tv), 
Pixiv Sketch (sketch.pixiv.net/lives)), and large platforms 
such as Twitch (twitch.tv) routinely have thousands of con-
current viewers across their creative channels [7]. Creative 
live streams can take on different forms depending on the 
streamer’s goal; e.g., streamers aiming to teach are more likely 
to talk about what they are doing, whereas other streamers may 
not talk at all, or may focus on socializing with viewers [7]. In 
general, live streamed videos differ from other types of videos 
in that they are unedited and often less planned out; they can 
include unexpected moments like mistakes, confusion, and 
responses to real-time questions from viewers [5, 15]. 

A challenge with watching live streams, especially when one’s 
goal is to learn from them, is the overwhelming amount of 
information [7, 14, 15]. Prior work has proposed methods for 
summarizing the content of knowledge-sharing streams [15] 
and video game streams [13]. StreamWiki [15] enables view-
ers to collaboratively generate a summary in real-time that 
helps others understand a stream’s content both during and 
after. Helpstone [13] uses a log of game actions to show 
context about the streamer’s gameplay and summarize what 
has happened so far. This paper takes an approach similar to 
Helpstone by using application usage to summarize a stream. 

Video Navigation and Segmentation 
Prior work has proposed methods for segmenting videos using 
application usage logs [9] and audio transcripts [19, 20], but 
not both together. This paper explores how these methods can 
apply to live streamed content, and argues that using both data 
sources together produces better results than either on its own. 

Segmentation based on application usage 
Application usage logs can reveal the type of task a user is 
working on and when they switch to something new, based on 
the tools, commands, and settings they use in their software. 
Chronicle [9] separates application usage logs into sections 
by save events, as users often save their work when they com-
plete a subtask. Chen et al. [3] found that creating new layers, 
switching to different tools, and adjusting parameters can all 
be indicators of switching tasks. We build on this work and 
consider save events, layer selection, and the distribution of 
commands over time. However, usage data only reveals part 
of the story. Streamers often explain what they will do before 
they do it, and depending on how application telemetry is in-
strumented, usage logs may not capture all activity. Therefore, 
we rely not only on usage data, but audio transcripts as well. 

Segmentation based on audio transcripts 
Prior work has demonstrated how audio transcripts can be 
used to segment and navigate lecture videos [10, 20] and 
movies [19]. More broadly, segmenting a body of text by topic 
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is a longstanding problem in the natural language processing 
community, and many different methods exist. Pavel et al. [20] 
found that for lecture videos, Bayesian topic segmentation [4] 
was most successful due to its incorporation of “cue phrases”; 
i.e., common keywords or phrases that indicate transitions, 
such as “now” or “next”. Early experimentation with applying 
this method out-of-the-box to creative live stream transcripts 
did not show promising results, likely because streamers often 
rapidly switch between talking about their work and other 
unrelated topics guided by the live chat, all while working 
on the same task. In addition, any transcript-only method 
misses activity that the streamer does not explicitly narrate, 
and streamers often work in silence for long periods of time. 
Inspired by Bayesian topic segmentation, our algorithm does 
incorporate cue phrases, as we found that streamers often talk 
about their process when they transition between subtasks. 

FORMATIVE STUDIES 
To understand what it would mean to segment creative live 
stream recordings in a meaningful way and determine possible 
use cases for segmented videos, we conducted interviews with 
3 creative streamers and 7 creative live stream viewers, and 
an online study comparing how different viewers segment 
the same videos. We found that viewers want a quicker way 
to browse live stream videos, but manually segmenting is a 
difficult task for streamers, and different people segment the 
same video in different ways. 

Interviews With Streamers 
The streamers (SP1-SP3) were recruited from a popular online 
creative community (Behance), ranged from 24 to 36 years 
old (all men), and reported streaming at least once a week. 
Two participants were new to streaming, and one was a stream-
ing expert who in the past had streamed as his full time job. 
The streamers’ domains of expertise included illustration, pho-
tography, and design. Each interview took place over video 
conferencing and lasted 30 minutes. 

Method 
The streamers first participated in a semi-structured interview 
where they were asked about their creative work, their expe-
rience streaming, their thoughts on live stream archives, and 
how they interact with their viewers. Then they were shown 
design mockups of a video player interface (see Figure 2b) and 
asked about different strategies for segmenting their streams 
and how a segmentation would affect their viewers’ experi-
ences. Our goal was to assess which metadata from the stream 
the streamers would find most useful and want to show to their 
audience. Last, they were asked to do a think-aloud activity 
where they walked the interviewer through one of their recent 
streams and described the parts of their creative process. 

Results 
The streamers mentioned several motivations for streaming 
their creative work. One stemmed from a desire to grow a 
relationship with their audience and build a community of 
fans, corroborating previous research [7]. The streamers also 
mentioned wanting to share parts of their process outside of 
just the procedural steps; SP1 and SP2 both explained wanting 
to share the why behind their artwork in addition to the how. 

When asked about the idea of a table of contents for live stream 
videos, streamers responded positively, expecting that it would 
make their live streamed content easier for viewers to navigate. 
However, streamers did not want to manually create sections, 
as it would take too long and they were unsure whether the 
time spent would be worth it: 

“the amount of time I spend on creating a table of con-
tents would depend on whether I can monetize my time.” 
—SP1 

The streamers were interested in the idea of automatically 
generating a table of contents. SP1 said that he would want 
the ability to edit it in case it was not exactly what he wanted. 
When asked what good sections for their videos might look 
like, all three streamers expressed some uncertainty. SP1 said 
that his more instructional-focused streams could likely be 
broken up based on the steps they show, but some of his other 
videos just involve him doing one type of task the whole time, 
such as inking a drawing. SP3 said he tends to bounce around 
a lot between different subtasks which could make higher-
level sections hard to identify. Even when we asked streamers 
what the ideal sections for a particular stream of theirs might 
be, answers were not obvious. This strongly suggests that 
multiple segmentation schemes may be necessary depending 
on an individual stream’s content and structure. 

Interviews with Viewers 
The viewers (VP1-VP7) were recruited from email distribution 
lists at a large software company and through posts on Twitter, 
and ranged from 21 to 41 years old. The viewers reported 
watching creative streams at least once a week, mostly in 
the domain of illustration. All interviews took place either 
in-person or remotely via video conferencing, based on each 
viewer’s preference. Each study session lasted approximately 
60 minutes and participants were compensated with a $25 
USD gift card for their time. 

Method 
The viewers also first participated in a semi-structured inter-
view; they were asked about their stream-watching behavior, 
whether they ever watch live stream archives or clips, and 
what they think makes live streams good or bad experiences. 
Next, they participated in a think-aloud activity where they 
were asked to walk the interviewer through a video of a stream 
they had recently watched (if they didn’t have a link to a video 
ready, they were provided with one chosen by the interviewer) 
and describe an outline of the stream content. The interviewer 
asked the viewer about the reasoning behind their outline and 
observed the viewer as they interacted with the video record-
ing during this task. Last, viewers were shown mockups of 
four different schemes we considered for segmenting a live 
stream video (Figure 2): creative process, working/talking, 
talking type, and info highlights. These schemes were loosely 
inspired by the four creative streaming types noted in prior 
work [7]. Viewers were asked about their impressions and 
which schemes they preferred. 

Results 
We found that viewers used several signals to denote whether 
a part of the video was of interest. For example, in the stream 



     

  

Figure 2. a) Mockups showing four possible ways to segment a live 
stream that were shown to formative study participants. (b) A detailed 
mockup showing how a segmentation might appear below a video player. 

walkthrough task, most viewers turned on audio right away. 
When asked why, viewers said they were expecting explana-
tion or context about what is being done and wanted to use the 
narration as a way to orient themselves in the video: 

“Commentary ... sometimes really helps with backstory, 
like, why they’re drawing this ... so I kind of wanted 
to see if they were gonna talk about that, or any other 
commentary I might need to know.” —VP4 

Viewers also used video thumbnails and timeline scrubbing to 
compare changes between video frames to find moments of 
interest. This corroborated with how viewers described their 
stream-watching behavior in general, where they often leave a 
stream on in the background and look over to see if something 
of interest is happening: 

“I ... don’t tend to spend a lot of time watching the stream. 
People spend a lot of time doing the same thing ... So I 
tend to spend like 10 minutes or something getting some 
technique ... that I can adopt.” —VP7 

Surprisingly, most viewers stated they currently didn’t watch 
archived streams, because they are too long and tedious to 
navigate. Viewers did say they watch speedpaints (sped-up 
recordings of creative processes) and art tutorials on platforms 
like YouTube. Their reasons for watching these types of videos 
over live stream archives were that high visual change is easier 
to see, they are more efficient to learn from, and it is easy to 
repeat portions of the video they want to watch more carefully: 

“I feel like with speedpaints ... you see everything coming 
together in a short amount of time so you can grasp what 
is being done easier ... with [live streams], obviously 
they’re drawing in like real time so it’s slower ... I’ll 
click away and come back later ... I guess because I’m 

impatient and I just want to see start to finish quicker and 
I can apply it to my own drawing sooner as well.” —VP6 

If live stream recordings were similarly easy to browse and 
navigate, they could afford similar advantages for learning, 
and thus would likely be watched more. 

In the mockup task, viewers overwhelmingly preferred cre-
ative process and info highlights, explaining that they liked 
having access to a high-level view of the process. For example, 
VP7 stated that while watching streams, they often try to com-
pare their own process with the streamer’s in order to adopt 
new techniques or drop current ones. Viewers also desired the 
ability to skip directly to the parts of the process that were 
interesting to them with respect to their current learning goals: 

The [creative process mockup] is also nice because ... if 
you want to see the whole process but then maybe you’re 
like, you know, I already know sketching lineart, I want 
to see the shading, I can just skip to the shading. —VP5 

However, viewers also pointed out that not all streams show a 
holistic process; a process may be broken into several separate 
streams or there may even be gaps where some work was done 
offline. In these cases, viewers favored highlights as unique 
and specific signals of what small portions of the video may be 
worth watching. This supports our findings from the streamers, 
who also anticipated needing different segmentation schemes 
for streams depending on their format. Viewers preferred the 
talking mockups least, explaining that they would place less 
emphasis on re-watching the streamer talk in a social manner 
(at least in the context of creative streams) because they would 
be missing the experience of participating live. 

Collecting and Comparing Viewer Segmentations 
Since our interviews suggested that segmenting a creative 
live stream may not have a clear solution, we conducted an 
online study where human coders segmented a sample set of 
23 videos. We gathered segmentations from multiple coders 
for each video to see how consistent different people are with 
each other. The coders represent potential viewers of these 
streams, since the goal of a segmentation is to aid viewers in 
browsing and navigating videos. 

Data Collection 
For our dataset of creative live stream videos, we selected four 
streamers on Behance that showcase different types of cre-
ative work commonly done in Photoshop: graphic design (S1), 
comic art (S2), digital illustration (S3), and image composit-
ing (S4). For each streamer, we chose 5-7 of their publicly 
available videos on Behance that lie between 30 minutes and 
2 hours in length, and for which we had complete application 
usage logs and transcripts. This produced a set of 23 videos. 

We recruited 158 coders with self-reported intermediate to ex-
pert experience with Adobe Photoshop to segment each video 
(an average of 6.9 coders segmented each video). Coders were 
recruited from usertesting.com, an online worker platform. 
Coders were given up to 20 minutes to generate a segmenta-
tion for one video in our input set; this time limit was enforced 
to help ensure that coders would generate outlines at similar 
levels of granularity. Instructions were open-ended; we asked 
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coders to segment videos into “meaningful sections”, allowing 
them to segment in whatever way they thought fit. We removed 
segmentations that had 3 or fewer segments, spanned less than 
half the video, or had obviously spam/gibberish section names. 

Analysis 
To quantify how similar different coders’ segmentations were, 
we calculated the boundary similarity [6] between each pair of 
segmentations for each video. Boundary similarity computes 
a score representing the similarity between two segmentations 
based on boundary edit distance to differentiate between full 
and near misses. Boundary similarity scores range between 
0 and 1, where a score of 1 means the two segmentations are 
exactly the same, and a score of 0 means they are completely 
different. In contrast to window-based metrics (which are 
calculated by comparing one manual segmentation to some 
ground-truth segmentation) [21], boundary similarity is sym-
metric, allowing its use to compute pairwise similarity means 
for more than two manual segmentations. This was suitable 
for our case since we had more than two coders segment each 
video and no ground-truth segmentation. We computed bound-
ary similarity scores using a boundary edit distance window of 
120 seconds, which is the maximum distance that two bound-
aries may span to be considered a near miss (as opposed to a 
full miss, which is penalized more strictly). 

Results 
Coders generated between 4 and 41 sections for each video, 
with an average of 11 sections per video. Sections ranged 
from 10 seconds to 1h40m long, with an average length of 6 
minutes. 

Table 1 shows a summary of the boundary similarity scores 
for each streamer’s videos, which indicate how consistent 
different coders were to each other. Overall, coders were not 
very consistent; the average boundary similarity score across 
all streamers was 0.255, and the highest boundary similarity 
score was 0.679. This supports our interview findings that 
segmenting creative live stream videos is not straightforward, 
and there may be more than one “correct” way to do so. 

Takeaways 
Our formative studies confirmed the need for better ways to 
consume archived creative live stream videos, and suggested 
that segmenting live streams is not a straightforward task. 
More specifically, we learned that streamers: 

• see value in a table of contents but are not willing to spend 
time making one manually, and 

• have a hard time anticipating the best way to segment a 
stream. 

Streamer # scores Mean SD Median 
S1 127 0.243 0.108 0.236 
S2 136 0.268 0.139 0.240 
S3 92 0.322 0.140 0.310 
S4 132 0.208 0.110 0.186 

Table 1. Summary of similarity scores for pairs of coder segmentations 
(1 = identical, 0 = completely different). # scores refers to the number of 
similarity scores (i.e., pairs of segmentations) for each streamer. 

Meanwhile, viewers: 

• see value in an overview of the creative process that allows 
them to skip to relevant parts of the video, 

• find speedpaints and how-to videos easier to navigate with 
current interfaces, and 

• segment the same video in different ways, suggesting there 
is no one “right” way to segment creative live streams. 

Together these findings point to the need for an approach 
that requires little effort from streamers and offers viewers a 
meaningful way to navigate. To satisfy both of these goals, we 
decided to pursue a streamer-in-the-loop approach for creating 
a table of contents: we designed an algorithm to automatically 
segment videos into sections that the streamer can then label. 

SEGMENTATION ALGORITHM 
The goal of this algorithm is to obtain a temporal segmentation 
of the entire stream, where each section contains a meaningful 
step in the art process. We use a transcript of the streamer’s 
audio and a log of their software usage to determine the opti-
mal boundaries for sections, combining both input sources in 
a novel algorithm. We designed the algorithm in such a way 
that it could be extended to include additional input sources, 
such as visual data. We chose a heuristic approach over a 
data-driven approach because our formative work showed that 
there is no single “ground truth” way to segment a video. 

Video Metadata 

Transcripts 
During live streams, streamers talk casually to the viewers 
about various topics. Each streamer has a characteristic style. 
For example, some streamers talk throughout the stream while 
others talk sparingly; some streamers talk only about their 
work while others also chat about unrelated topics as they 
work. Regardless of their style, in instructional live streams, 
streamers usually include some explanation of the major steps 
or techniques they are using. These explanations are good 
pointers to the main parts of the art process. 

We obtain the transcript of the stream using a speech-to-text 
engine [1] that splits the transcript into sentences and includes 
the start and end time of each sentence. 

Application usage logs 
The log of a streamer’s soft-
ware usage contains a lot 
of information about their 
process [3, 9]. Some com-
mands indicate a transition 
between different types of 
tasks. Some groups of com-
mands are used together to 
achieve a single task. 

We obtain the streamer’s ap-
plication usage log through 
an Adobe Photoshop plugin 
that records user actions, which the streamer enables during 
the live stream (Figure 3). Each event in the log comprises 
the name of the command (e.g., select layer, mask), the 

Figure 3. An example of the ap-
plication usage log obtained by 
an Adobe Photoshop plugin. 



 

 

 
    

    

  

   

  
  

 

 

  

  

 

   

 
 

timestamp for when the command was used in the stream, 
and other command-specific details (e.g., the ID of the layer 
that was selected). Similar data can also be obtained through 
computer vision techniques [2] or accessibility methods [8]. 
We categorize commands as either navigational or editing. 
Navigational commands do not alter the document but are 
used to navigate and show different parts (e.g., zoom, hide 
layer). Editing commands, on the other hand, modify the 
document (e.g., brush, create layer). 

Pre-processing 
Identifying candidate section boundaries 
First, we identify all candidate section boundaries, ti, by taking 
the union of all the event timestamps in the usage log and the 
beginning and end of each sentence in the transcript (Figure 4). 
Since we do not want section boundaries to occur in the mid-
dle of a streamer’s sentence, we disregard any usage event that 
occurs mid-sentence. We designate the interval between two 
contiguous candidate boundaries ti and ti+1 as pi = [ti, ti+1). 
Many streamers display a starting soon screen at the begin-
ning of their stream while they check their setup and wait for 
viewers to join. Since this part of the stream does not include 
any information, we do not consider it as part of any section. 
Instead, we begin the first interval p0 at the start of the first 
candidate boundary time t0. 

Intro and Outro sections 
We observed that, like tutorials [11], most live streams include 
an intro at the beginning and an outro at the end. The intro is 
the period before the streamer starts working, where they greet 
viewers, introduce their project, and show any preparations 
they have done. The outro consists of them summarizing what 
they did, advertising their next stream, and saying goodbye. 

To identify the intro and outro sections, we look for the first 
and last editing commands. We exclude navigational com-
mands because streamers often use them to show their prepara-
tory work (e.g., reference images or preliminary sketches), or 
to review parts of their final artwork. The intro starts at t0 and 
ends at the first editing command. The outro starts after the 
last editing command and lasts until the end of the stream. If 
either section is shorter than 30 seconds, we do not split it into 

Figure 4. Pre-processing step of our segmentation algorithm. First, 
we identify candidate section boundaries by taking the union of the 
sentence boundaries and command timestamps, and removing mid-
sentence boundaries. Then, we identify intro and outro sections by find-
ing the first and last editing commands. 

a separate section, but instead include it as part of the first or 
last main section. This is because extremely short sections are 
unlikely to aid navigation. 

Dynamic Programming Segmentation 
The problem of segmenting a live stream video into mean-
ingful sections is analogous to the line-breaking problem, i.e., 
arranging the words of a paragraph into lines. In both cases, 
we want to segment a sequence of discrete units (intervals 
or words) into an optimal set of groups (sections or lines) 
defined by some scoring function over candidate sections or 
lines. We first explain the high-level structure of our algo-
rithm that is based on Knuth and Plass’ optimal line-breaking 
algorithm [12], then we describe the scoring function in detail. 

Algorithm overview 
Given a sequence of n intervals P = {p0, ..., pn−1}, we find 
the optimal set of boundaries that segment the intervals into 
sections. Our algorithm processes the intervals in order, and 
for each pi computes and records the optimal set of sections Si 
formed by all intervals up to and including pi, along with the 
total score E(Si) for this partial solution. To determine the op-
timal partial solution for interval pi = [ti, ti+1), the algorithm 
considers each previous candidate boundary t j, where j ≤ i, 
and evaluates two possible ways of creating a section that 
includes intervals Pji = {p j, . . . , pi}: (1) Create a new section 
Pji, or (2) merge Pji with the last section in S j−1. After consid-
ering both possibilities for all previous candidate boundaries 
t j, we choose the segmentation with the highest total score, 
E(Si). Once the algorithm iterates through all intervals, Sn−1 
holds the optimal set of sections for the entire stream. 

Scoring function 
The algorithm described above requires a scoring function that 
evaluates the quality of a section formed by merging a set of 
contiguous intervals. The total score of a segmentation S is 
defined as the average score of its constituent sections, s ∈ S: 

E(S) = 
1 

∑ e(s)|S| s∈S 

where |S| is the number of sections in S and each s is a set of 
contiguous intervals {pk, ..., pk+m}. 
The scoring function for a section s takes into account four fac-
tors: (1) the duration of the section, (2) transitional commands 
in the application usage log, (3) coherence of the commands 
used, and (4) transitional phrases in the transcript. 

(1) Duration of a section: Very short or very long sections are 
less helpful for navigation. We penalize extremely short (< 1 
minute) or extremely long sections (> 10 minutes). We include 
a linear dropoff from 1 to 0 for sections less than 1 minute 
or greater than 10 minutes rather than having a strict cut-off 
length because these length requirements are approximate 
goals (a 59-second section should not be penalized signifi-
cantly more than a 60-second section). However, we do have 
a strict cut-off for sections shorter than 30 seconds, because 
we believe those are too short to be useful. 



 
   

     
 

    
 

 

 
  

 
 

 
 

 
 

 

 

  
  

 

  
  

  

  

  

 
 

  

 
 

  
  

 

   
  

  
 

 

  

 

 

    

 
 

 
 

  
 

 

  
 

 

 
 

  

   

  

   

⎪
⎪
⎧ 
−∞ dur(s) ≤ 0.5⎪⎨2dur(s) − 0.5 0.5 < dur(s) < 1 

elength(s) = 
11 − dur(s) dur(s) > 10⎪⎩ 
1 otherwise 

where dur(s) is the duration of section s in minutes. 

(2) Transitional commands: Prior work [3, 9] found that cer-
tain types of application commands indicate that users are 
transitioning between tasks. We build off Chronicle [9]’s ap-
proach, using save commands to indicate the end of subtasks; 
and Chen et al. [3]’s approach, using layer selection com-
mands to indicate the start of subtasks. Like Chronicle, we pre-
fer saves that are followed by a longer gap until the next com-
mand. We similarly prefer layer selections with longer 
time until the next layer selection, as this implies the user 
worked on the first selected layer for longer. 

For each save command, csave 
i , we compute its importance 

score I(ci ) by considering the time gap between that com-save 
mand and the next command, gap(ci ). The longer the gap,save 
the more important the save. 

gap(ci )i saveI(c ) = save max gap(csave) 
csave∈stream 

where the denominator is the maximum gap of all the save 
commands in the stream, and is included for normalization. 

We prioritize sections that have an important save command 
near the end of the section. The save score is defined as: 

t(clast_save(s)) − tstart(s)esave(s) = × I(clast_save(s))dur(s) 

where clast_save(s) is the last save command in s and 
t(clast_save(s)) is its timestamp. tstart(s) refers to the start time 
of section s. If there are no save commands in s, esave(s) = 0. 

Analogously, for a layer selection command ci 
layer, we 

compute its importance by considering the time gap between 
that command and the next layer selection command for 

ia different layer, gap(clayer). The longer this time, the more 
important the layer selection. 

i 
i 

gap(clayer)I(clayer) = 
max gap(clayer) 

clayer∈stream 

To avoid rewarding extremely short sections, we only consider
ilayer selection events for which gap(clayer) ≥ 30 seconds. 

We prioritize sections that have an important layer 
selection command near the beginning of the section. 

tend(s) − t(cfirst_layer(s))elayer(s) = × I(cfirst_layer(s))dur(s) 

where cfirst_layer(s) is the first layer selection command 
in s and t(cfirst_layer(s)) is its timestamp. tend(s) refers to the 
end time of s. Again, if there are no layer selection com-
mands in s, elayer(s) = 0. 

(3) Command coherence: Certain sets of commands are fre-
quently used together for a task [3], for example the color 

and select brush commands for illustration (Figure 3). Sep-
arating such coherent sets of commands from other sets of 
commands can help segment the stream into meaningful tasks. 

To estimate how coherent different commands are, we count 
the number of times a pair of commands appears adjacent to 
each other in the application usage log. The coherence, M, of 
a pair of commands ca and cb is defined as: 

# times ca occurs immediately before cbM(ca,cb)= 
total # times ca occurs before any other command 

where the denominator is used to normalize M to a range 
between 0 and 1. The coherence of a command with itself 
M(ca,ca) is defined as 1. 

We favor boundaries that lie between less-coherent commands. 
The command-coherence score for a section si is defined as: 

ecommands(si) = 1 − M(clast(si−1), c f irst(si)) 

where clast(si−1) refers to the last command in the previous 
section, si−1, and c f irst(si) refers to the first command in si. 
If none of the last three intervals in si−1 have commands 
and none of the first three intervals in si have commands, 
ecommands(si) is defined as 1. If only one of those two con-
ditions hold, ecommands(si) is defined as 0. This prioritizes 
boundaries between unrelated commands, or between a period 
of no application use and a period of application use. 

(4) Transcript semantics: Streamers often explain the impor-
tant steps in their art process. While the specific contents of 
these explanations vary widely and are often punctuated with 
other topics, key transitional phrases that indicate the start 
or end of a task can provide cues for segmentation [4]. For 
example, phrases such as “start” or “next” indicate the begin-
ning of a new step, while phrases such as “done” or “that’s all’ 
indicate an end. 

To determine the start and end phrase scores estart and eend for 
a candidate section s, we look for occurrences of (pre-defined) 
start and end phrases in s. We favor sections with a start phrase 
near the beginning and an end phrase near the end: 

tend(s) − tstart_phrase(s)estart(s) = 
dur(s) 

tend_phrase(s) − tstart(s)eend(s) = 
dur(s) 

where tstart_phrase(s) is the time of the last start phrase in s, and 
tend_phrase(s) is the time of the first end phrase in s. If there are 
no start or end phrases in s, the corresponding score is 0. 

Final Scoring Function: We define the final scoring function 
for a section s as the weighted sum of the component scores: 

e(s) = αlengthelength(s) 
+ αsaveesave(s)+ αlayerelayer(s) 
+ αcommandsecommands(s) 
+ αstartestart(s)+ αendeend(s) 



   
   

  

      

 

 

In our implementation, we use αlength = 5, αsaves = 5, αlayer = 
3, αcommands = 1, αstart = 2, and αend = 2, which we find 
through experimentation. However, as we explain in the Dis-
cussion, the optimal weights may depend on the type of stream 
and the streamer’s individual style. 

SEGMENTATION RESULTS 
We ran our algorithm on the 23 videos for which we collected 
viewer segmentations in the Formative Study. Table 4 in 
the Appendix shows a detailed summary of its output. Our 
algorithm generated between 6 and 26 sections for each video, 
with an average of 12 sections per video. Sections ranged from 
32 seconds to 13 minutes in length, with an average length 
of 5.5 minutes. 22/23 videos produced an Intro section, and 
18/23 videos produced an Outro section. 

In the following sections, we report on feedback and section la-
bels we gathered from two of these streamers, and compare our 
algorithm’s segmentation to viewer-generated segmentations. 

FEEDBACK & LABELS FROM EXPERT STREAMERS 
To investigate whether our segmentation algorithm is a good 
fit for the needs of artists and assess how easy it would be for 
them to add labels to the generated sections, we interviewed 
the first 2 streamers from our set of videos, S1 and S2 (both 
men). We showed them our segmentation in the context of a 
prototype interface (Figure 1) for three of their own videos, and 
asked them to label the sections and optionally change section 
timings. Our prototype interface presents a collapsed table 
of contents listing the sections with generic labels (Section 1, 
Section 2, etc.) and thumbnails showing the first frame of each 
section. A section can be expanded to show the application 
usage, transcript, and chat messages from that part of the 
video. The prototype was designed primarily to evaluate the 
algorithm, rather than as a novel interface. 

Method 
We recruited the streamers from Behance where they stream. 
Each interview lasted approximately 30-45 minutes and had 
three parts. First, we discussed their background and why they 
started live streaming their creative process. We then showed 
them the prototype interface and asked for their feedback on 
whether the automatically generated table of contents would 
be useful to their viewers, and discussed the segmentation, 
thumbnails, transcript, usage log, and chat. Last, we asked 
them to go through one of their videos, label each automati-
cally generated section, and make any desired changes to the 
timing of the sections. Following the interview, we sent them 
two more of their own videos with automatically generated 
tables of contents and asked them to do the same task on their 
own. We compensated them $60 USD for their time. 

Results 
Both streamers found the automatic segmentation useful; they 
felt it made it easier to navigate the long videos and helped to 
organize all of the metadata associated with a long stream. Ad-
ditionally, the thumbnails gave some meaning to the sections 
even in the absence of descriptive labels. 

When asked what would make the table of contents more use-
ful, both streamers said they wanted to add labels and edit the 

sections, confirming our streamer-in-the-loop approach. The 
two artists approached this task quite differently, though they 
both combined generated sections together resulting in fewer 
total sections (see Figure 5 for an example of each). S1 was 
happy with the generated sections but felt that they were too 
granular at times. He combined some sections together with-
out changing any section timings. Our algorithm generated 13, 
17, and 16 sections for his three videos, which he combined 
into 8, 11, and 10 sections respectively. 20 (69%) of these 
final sections were exactly the same as the generated sections. 
In contrast, S2 gave new start times for many of his sections. 
This took more effort, as he had to find exact times, but often 
his new start times differed only slightly from the algorithm’s. 
Our algorithm generated 16, 9, and 21 sections for his three 
videos; he created 6, 5, and 6 sections respectively. 3 (18%) 
of these final sections were exactly the same as the generated 
sections, and another 5 (29%) were within 15 seconds of the 
generated sections. Upon closer inspection, we found that this 
slight misalignment was most often due to putting a boundary 
between two sentences on the same topic. Other times the 
misalignment was not really an error; both start times were 
equally good. Please see the Supplemental Materials for a 
detailed comparison. 

We believe the difference in segmentation quality between the 
two streamers is due to three factors: type of stream, type of 
art, and transcript errors. One key difference between the two 
streamers is the type of stream they make. S2 typically streams 
making streams where he draws his online comics, while S1 
makes learning streams where he teaches the audience how 
to do design [7]. We found that in learning streams, the tran-
script contains many more useful cues for segmentation than 
in making streams, because the streamer talks more about 
what they are doing. Another key difference between the two 
streamers is the type of artwork they show. S1 showed poster 
design work that follows a relatively linear process, with each 
step involving different commands. S2 showed comic illustra-
tion, which involved many of the same commands throughout 
the process. Last, S2 played lyrical music in the background 
which caused errors in the transcription, resulting in erroneous 
boundaries. In the end, the combination of lack of process 
narration, the similarity in commands, and the transcription 
errors came together to create a lower-quality segmentation 
for S2’s streams. As a result he had to do more work to make 
a table of contents he was happy with. However, even in cases 
where the streamers did not agree with the output completely, 
they both found it helpful for creating their own sections. It 
was easier than segmenting from scratch as it gave them a 
starting point. 

Figure 5. A comparison of our algorithm’s segmentations to the stream-
ers’ final segmentations for the first video each streamer was given. 



    

 

 

  

  

  

 
  

COMPARISON TO VIEWER SEGMENTATIONS 
To evaluate our segmentation algorithm, we compared its re-
sults to the viewer segmentations collected in the Formative 
Study. Since we found that different people segment differ-
ently, our goal was to assess if our algorithm is at least as 
consistent with humans as they are with each other. If our 
algorithm can produce results at least as consistent as those 
made by potential viewers, this suggests it is reasonable. 

Method 
In addition to our algorithm’s segmentations, we generated 
several alternate segmentations for each video to see whether 
the algorithm would perform better than simpler alternatives. 
These include versions of the algorithm that use application 
usage data only (commandsOnly) and transcript data only 
(transcriptOnly), a random segmentation (random), and a uni-
form segmentation (uniform) based on the average duration of 
sections made by coders (6 minutes). 

To quantify how consistent our algorithm is with coder seg-
mentations, we use the boundary similarity metric [6] as in 
the Formative Study. For each video, we first compute pair-
wise similarity scores between the algorithm’s segmentation 
and each coder’s segmentation. The average of these scores 
gives a measure of how consistent our algorithm is with coders 
for segmentation of a single video (algorithm-coder similar-
ity). To determine whether the algorithm is as consistent with 
coders as they are with each other, we use a paired t-test com-
paring the average algorithm-coder similarity scores to the 

average coder-coder similarity scores across all videos for 
each streamer. Similarly, we compare algorithm-coder sim-
ilarity with the other alternate segmentations’ similarities to 
coders (random-coder, uniform-coder, commandsOnly-coder, 
transcript-Only-coder). 

Results 
Results varied across streamers, but in most cases, the algo-
rithm was reasonably consistent with coders and better than 
random or uniform segmentations. 

Algorithm is similar to coders for 3 out of 4 streamers. 
Table 2 shows the paired t-test results comparing algorithm-
coder similarity to coder-coder similarity. For S1, S3, and S4, 
the algorithm-coder similarity scores were not distinguishable 
from coder-coder similarity scores, meaning that the algo-
rithm was roughly as consistent with coders as coders were 
with each other. However, for S2, the algorithm-coder group 
was significantly less similar, suggesting that the algorithm 
performed worse than coders. 

Algorithm is more consistent than other automated meth-
ods for some streamers. Table 3 shows the paired t-test re-
sults comparing algorithm-coder similarity to the other al-
ternate segmentations. In most cases, our algorithm’s seg-
mentation aligned more closely with coders than random or 
uniform segmentations. For S1, the algorithm also aligned 
more closely with coders than either of the commandsOnly or 
transcriptOnly alternatives, and for S2, the algorithm aligned 

Streamer n 
algorithm-coder 
mean similarity 

algorithm-coder 
median similarity 

coder-coder 
mean similarity 

coder-coder 
median similarity t p 95% CI 

S1 7 0.259 0.248 0.243 0.236 0.202 0.85 [-0.03, 0.04] 
S2 5 0.191 0.193 0.268 0.240 -4.563 0.01 [-0.13, -0.03] 
S3 6 0.292 0.255 0.322 0.310 -0.796 0.46 [-0.12, 0.06] 
S4 5 0.203 0.202 0.208 0.186 -0.256 0.81 [-0.04, 0.03] 

Table 2. Results of paired t-tests comparing the similarity of the algorithm with coders to the similarity of coders with each other, for each streamer. n 
refers to the number of videos for that streamer (i.e., the number of average boundary similarity scores in each group). For S1, S3, and S4, the difference 
between the two groups is not significant. For S2, the algorithm-coder group is significantly less similar than the coder-coder group. 

Streamer n Comparison group Mean similarity Median similarity t p 95% CI 
S1 7 random-coder 0.129 0.121 4.413 0.01 [0.06, 0.21] 

uniform-coder 0.165 0.168 3.453 0.01 [0.03, 0.17] 
commandsOnly-coder 0.196 0.196 2.996 0.02 [0.01, 0.13] 
transcriptOnly-coder 0.201 0.173 2.602 0.04 [0, 0.11] 

S2 5 random-coder 0.081 0.082 4.282 0.01 [0.04, 0.18] 
uniform-coder 0.112 0.108 2.386 0.08 [-0.01, 0.16] 
commandsOnly-coder 0.161 0.184 1.461 0.22 [-0.03, 0.10] 
transcriptOnly-coder 0.143 0.138 2.913 0.04 [0, 0.09] 

S3 6 random-coder 0.142 0.129 4.160 0.01 [0.06, 0.25] 
uniform-coder 0.179 0.162 2.851 0.04 [0.01, 0.22] 
commandsOnly-coder 0.242 0.223 1.846 0.12 [-0.02, 0.12] 
transcriptOnly-coder 0.204 0.184 2.129 0.09 [-0.02, 0.21] 

S4 5 random-coder 0.143 0.135 2.700 0.05 [0, 0.12] 
uniform-coder 0.184 0.184 1.485 0.21 [-0.02, 0.06] 
commandsOnly-coder 0.194 0.190 0.240 0.82 [-0.04, 0.05] 
transcriptOnly-coder 0.193 0.179 1.059 0.35 [-0.02, 0.04] 

Table 3. Results of paired t-tests comparing algorithm-coder similarity to the similarity of four alternate algorithms with coders, for each streamer. In 
all bolded rows (p < 0.05), the positive t scores indicate that the algorithm-coder group had higher similarity than the comparison group. 



     

    

  

   

   

 

 

 

more closely with coders than transcriptOnly. For S3, the al-
gorithm was marginally more similar to coders than those two 
alternatives, and for S4 there were no significant differences. 

Discussion: Differences Between Streamer Styles 
The performance of our algorithm varied across the four 
streamers, suggesting that it may work better for certain 
streaming styles over others. Based on our observations of 
the videos in this set, S1 and S3 tend to follow a more linear 
step-by-step process than S2 and S4, in terms of both the com-
mands they use and the amount of instructional narration they 
do. This may be why the algorithm performs better on those 
streamers’ videos. The result that the algorithm was signif-
icantly less consistent with coders for S2 corroborates S2’s 
desire to more drastically change their automatically-generated 
segmentations. 

For S1, the algorithm performed significantly better than ei-
ther commandsOnly or transcriptOnly, and for S3, marginally 
better, indicating that both data streams are important, but the 
relative utility of each may depend on the streamer. It may be 
the case that different streamers benefit from different weights 
for the algorithm’s scoring function components. 

DISCUSSION & FUTURE WORK 
The algorithm proposed in this paper performs better on some 
streams than on others, highlighting the complexity of live 
stream segmentation. We found that there is no one single 
solution, but we believe that leveraging additional metadata 
about the video could improve segmentation. Our approach 
is generalizable to incorporating other input sources, such as 
chat logs, audio, and visual data. For example, logs from the 
live chat could be used to find moments of high interest [17] or 
topic changes, audio analysis could help address transcription 
errors where background music is transcribed as speech, and 
computer vision could be used to adjust boundaries where 
a command is not aligned with visual change. In situations 
where the application usage is missing or not very discrimina-
tory (as in S2’s case), the spatial location of edits could also 
be useful [3]. Last, one could also ask the streamer or viewers 
to mark section boundaries during the live broadcast [15]. 

Finding Highlights 
The goal of our algorithm was to create a table of contents, but 
we found that many streamers and viewers are also interested 
in highlights. Twitch allows streamers and viewers to manu-
ally create highlight clips from streams. Future work should 
explore how to automatically generate useful highlights. As 
one example, a viewer may wish to see all moments where the 
streamer answered a question from the chat. We have begun 
to develop a method for locating these moments using the 
transcript and chat log of a video. We find all chat messages 
with a question mark and search subsequent transcript sen-
tences for an approximate match. Since streamers often read 
questions out loud before responding to them, finding a match 
helps to find the moment right before the streamer answered 
the question. An approach like this could be extended to find 
all moments of streamer-viewer interaction (not just question-
answering) and allow viewers to watch only these moments or 
to skip them and focus on the instructional content. 

Evaluating Algorithm Success 
As is often the case with creative open-ended tasks, applying 
automated methods to understand them is difficult. As we 
found in both our formative work and our evaluations, it is 
not obvious how best to segment a live stream, and different 
people can produce very different segmentations. Notably, the 
streamers we interviewed generated much longer sections on 
average (10.5 minutes) than our algorithm (5.5 minutes) or 
the coders (6 minutes). This suggests that a streamer’s desired 
segmentation may not always align with what viewers want. 

The fact that our algorithm was at least as consistent with 
coders as they were with each other is promising, but whether 
and how its segmentations help viewers more easily navigate, 
understand, and learn from videos remains to be seen. We also 
hypothesize based on our feedback from streamers that having 
any segmentation for a video is better than no segmentation 
at all, as it gives viewers more ways to skim the contents 
of a video compared to a traditional interface. Future work 
should evaluate this hypothesis and explore the design space 
of interfaces for presenting a table of contents, and how they 
compare to traditional video-viewing interfaces. 

Generalizability of Approach 
Our current approach and evaluation focused on live streamed 
videos in Adobe Photoshop, but we believe it can extend to any 
creative software screencast videos. Most software include 
a save command, and other general transitional commands 
could be added such as opening/closing a document. Layer 
selection is also not specific to Photoshop; many graphic de-
sign and digital art applications also include layers as a main 
organizational tool. Our approach for transcript analysis may 
even generalize more broadly to any demonstrational video 
(e.g., physical DIY tutorials or cooking videos). Future work 
should explore how our approach applies to these broader do-
mains, as it may have implications for general live streaming 
platforms, not just those focused on creative work. 

CONCLUSION 
This paper presented a streamer-in-the-loop approach for tem-
poral segmentation of creative live stream videos. We de-
veloped an algorithm that uses audio transcripts and applica-
tion usage logs to automatically segment videos into sections 
based on steps of the creative process. The streamer can then 
add their own labels to each section to help viewers navigate. 
Through feedback from two streamers and a comparison of 
our algorithm’s output with segmentations made by viewers on 
23 videos, we found that our approach works well for videos 
where the streamers consistently talk about their process and 
use a variety of application commands. More generally, we 
find that the task of segmenting creative live streams into sec-
tions is not straightforward and has many possible solutions. 
We argue that our approach provides one reasonable solution, 
bringing viewers one step closer to the wealth of knowledge 
that lays hidden inside live stream videos. 
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APPENDIX 

Streamer Type of Work Duration # Sections Shortest Section Longest Section Avg Section Length Intro? Outro? 
S1 Graphic Design 1:45:01 17 1:28 9:52 6:10 3 7 

0:52:25 13 0:48 9:55 4:00 3 3 
0:59:21 11 0:59 9:55 5:20 3 3 
0:56:42 11 0:54 9:57 5:09 3 3 
1:02:28 13 1:14 9:56 4:48 3 3 
1:11:43 11 1:03 9:59 6:31 3 7 
1:01:31 11 2:17 10:00 5:33 3 7 

S2 Comic Art 2:05:10 21 1:21 9:51 5:48 3 3 
0:58:06 7 1:19 10:00 8:11 3 7 
0:55:51 9 1:11 9:55 5:54 3 3 
1:20:24 10 1:19 13:15 7:41 3 3 
1:47:60 16 1:30 9:59 6:43 3 3 

S3 Digital Illustration 0:48:36 7 0:37 9:57 6:32 3 3 
0:29:54 6 0:38 9:04 4:47 3 3 
0:28:22 6 1:56 9:42 4:27 3 3 
0:36:36 9 1:19 7:28 3:49 3 3 
0:33:04 6 0:37 9:40 5:05 3 3 
0:50:39 13 1:45 8:09 3:37 7 3 

S4 Image Compositing 2:04:38 26 0:44 9:50 4:48 3 3 
1:14:08 12 1:00 10:01 6:11 3 3 
0:31:55 8 0:32 10:00 3:59 3 3 
1:22:23 18 1:47 8:10 4:34 3 3 
1:03:05 11 2:08 9:57 5:44 3 7 

Table 4. Summary of our segmentation algorithm’s output on a sample set of 23 videos from 4 streamers. Duration is in H:MM:SS format, and section 
lengths are in MM:SS format. Intro and Outro specify whether the algorithm generated an Intro and Outro section, respectively. 
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