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ABSTRACT

We present CritiqueKit, a mixed-initiative machine-learning
system that helps students give better feedback to peers by
reusing prior feedback, reducing it to be useful in a general
context, and retraining the system about what is useful in real
time. CritiqueKit exploits the fact that novices often make
similar errors, leading reviewers to reuse the same feedback
on many different submissions. It takes advantage of all prior
feedback, and classifies feedback as the reviewer types it. Cri-
tiqueKit continually updates the corpus of feedback with new
comments that are added, and it guides reviewers to improve
their feedback, and thus the entire corpus, over time.
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INTRODUCTION

Feedback is a formative part of learning, especially in creative
domains [3, 8, 9]. However, good feedback is rare because it is
time-consuming to give and people are not consistently skilled
at providing it [5, 11]. As classes grow larger and online
learning becomes more prevalent, peer feedback is a common
substitute for instructor feedback. However, the utility of peer
feedback is often limited, because students are not explicitly
taught how to provide helpful, actionable feedback [5].

What if a system could take advantage of all the feedback
people have given in the past to guide reviewers toward im-
proving their own feedback? We introduce an approach for
reusing feedback, reducing it to be useful in a general context,
and retraining the system about what is useful in real time.
CritiqueKit recommends prior feedback to student reviewers
and automatically analyzes their feedback in real time to help
them improve it (Figure 1).

Reviewers can view and reuse previously supplied comments,
which provide awareness of what other reviewers have said
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Figure 1: The CritiqueKit system components. Recommendations are
generated from the feedback corpus. A machine-learning classifier
categorizes feedback in real time. A text processor abstracts the user’s
feedback and adds it to the feedback corpus for reuse.

before and may spark ideas they would not have otherwise
considered [2, 5]. To make reviewers aware of common is-
sues, CritiqueKit sorts recommendations by usage frequency.
As the reviewer types, four checkboxes update in real-time
(Figure 2b) to indicate whether the comment satisfies the char-
acteristics of high-quality feedback. CritiqueKit extends prior
work by providing ambient feedback in real time, rather than
prompting the reviewer to improve after they submit a com-
ment [6, 7].

In an initial deployment, 20 design students used CritiqueKit to
give feedback on website designs. CritiqueKit successfully en-
gaged most students in correcting the classifier, demonstrating
awareness of feedback characteristics. However, few sugges-
tions were reused, emphasizing the need for more high-quality
and relevant suggestions. Our findings suggest directions for
future work to improve on these techniques.

CRITIQUEKIT SYSTEM DESIGN AND IMPLEMENTATION
The CritiqueKit architecture comprises five components: a
web interface, a corpus of feedback, a feedback classifier, a
text processor, and a recommendation engine (Figure 1). The
system is a client-server web application implemented using a
combination of Node.js and Python. The feedback corpus is
stored on the server in JSON format.

CritiqueKit interface

The CritiqueKit interface allows reviewers to provide feed-
back on others’ assignments (Figure 2). The reviewer can
type their own feedback or insert previously given feedback
from the list of suggested examples. As the reviewer types,
four checkboxes in the quality awareness pane (Figure 2b)
update as indicators of the quality of the reviewer’s feedback.
The reviewer can make manual corrections to the indicators,
improving the system’s interpretation of feedback. To enable
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targeted feedback, the reviewer can also attach their comment
to a specific location on the document being reviewed.

Feedback corpus

The feedback corpus can be any set of feedback previously
given on course assignments. The text processor and classifier
automatically prepare this feedback for reuse. This serves as
the initial set of suggestions that are shown in the interface.
The corpus updates over time as more feedback is added.

Feedback classifier

As the reviewer types their feedback in CritiqueKit, it is dy-
namically classified in real-time under four different categories
based on common attributes of good feedback [4, 10]: “posi-

9 < CLINY3

tive”, “specific”, “problem”, and “solution”.

ELINNTS

The “positive”, “problem”, and “solution” categories are in-
formed by classifiers, which use natural language processing
(primarily tf-idf) and logistic regression. Our supervised learn-
ing approach is similar to [10]: identify lexical and syntactic
features from the text in the comments and train a classifier
to categorize each comment. Categories are not mutually ex-
clusive (e.g,“I like the color of the start button but the font
is absolutely atrocious, try using Gotham” fits all three cate-
gories). We trained a separate classifier for each category. The
training set consisted of ~5000 sentences of feedback from
three undergraduate courses. Each sentence was manually cat-
egorized as positive, problem, and/or solution. CritiqueKit’s
classifiers outperform a naive classifier that always predicts
the most common answer with F-Scores at least 0.15 higher.

The “specific” category is not informed by a classifier: a
comment is labeled as specific if it is positive and at least 4
words, to discourage bland positive comments like “good job”.

CritiqueKit lets reviewers correct any classification errors.
These corrections supply additional labeled training examples
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Figure 2: The CritiqueKit user interface. a) The reviewer types their
feedback into the text box. b) Checkboxes in the quality awareness
pane update in real-time showing how well the comment fulfills
high-quality feedback criteria. c) The reviewer can attach their
feedback to a specific location on the design. d) The reviewer can
browse and reuse suggested feedback, and flag low-quality feedback.

of false positives and false negatives that can be used to retrain
the classifiers.

Text processing of feedback for reuse

When the reviewer submits feedback, the text processor cleans
it up to make it more generally applicable. It is then added
to the feedback corpus, so future reviewers can reuse it from
the set of examples. Based on a manual process used in initial
pilot studies, the text processor excludes comments too similar
to existing ones, truncates lengthy comments to 25 words or
fewer, and replaces phrases in “quotation marks” or following
an “e.g.” with fillable blanks, as these tend to reference specific
features in the original document.

Recommendation engine

The recommendation engine ranks the feedback from the cor-
pus and presents it to the user by category (positive, problem,
solution). Inspired by systems like Gradescope [1], sugges-
tions are ordered by frequency of reuse to highlight common
issues across student work. This could be improved by com-
paring the document being reviewed to the comment’s original
document, to surface the most likely relevant comments.

STUDY

We conducted an exploratory online deployment with 20 de-
sign students at a university. After viewing a brief tutorial of
CritiqueKit, participants were tasked with providing feedback
for three restaurant website homepages. There were no re-
quirements for the quantity or length of feedback reviewers
could provide. For our initial feedback corpus, we used a
dataset of feedback given by crowd workers on design projects

[11].

Results

The 20 participants provided a total of 155 comments (7 per
person, SD=4.83). CritiqueKit categorized their comments
as mostly problem + solution (33.55%), positive + specific
(28.39%), and problem-only (27.74%) compared to positive-
only (4.17%) and solution-only (10.97%). While most positive
comments were specific, a significant portion stated a prob-
lem without suggesting a solution; more intervention may be
needed to encourage reviewers to give actionable feedback.

67% of the reviewers actively engaged with the classifier by
making corrections a total of 85 times. This indicates that
most reviewers were attentive to the accuracy of their feedback
classifications. However, only 23 suggestions were reused in
total. Most suggestions were not directly relevant to the task
and some may have been too vague to be applicable.

FUTURE WORK

We are improving CritiqueKit’s classifier and refine the cate-
gories to ensure they capture high-quality feedback. We also
plan to explore more effective ways to use prior feedback
for inspiration, as students seemed reluctant to directly reuse
comments. For example, ensuring suggestions are contextu-
ally relevant may make them more useful to reviewers. With
further research, systems like CritiqueKit can help reviewers
learn from each other and improve their feedback over time.
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